PROCEEDINGS

of the

CALIFORNIA ACADEMY OF SCIENCES

Fourth Series

Vol. VIII, No. 6, pp. 181-270, pls. 7-17 October 18, 1918

VI

THE GARTER-SNAKES OF WESTERN NORTH AMERICA

BY
JOHN VAN DENBURGH
Curator, Department of Herpetology and
JOSEPH R. SLEVIN
Assistunt Curator, Department of Herpetology

TABLE OF CONTENTS

PAGE

Introductory remarks 182
List of species and subspecies 183
Key to the various forms 184
The Sirtalis group 185
General discussion 186
Thamnophis sirtalis parietalis 190
Thamnophis sirtalis concinnus 192
Thamnophis sirtalis infernalis 198
Thamnophis eques 204
The Elegans group 206
General discussion 207
Thammophis ordinoides ordinoides 215
Thamnophis ordinoides atratus 224
Thamnophis ordinoides elegans. 235
Thamnophis ordinoides vagrans. 240
Thamnophis ordinoides biscutatus 245
Thamnophis ordinoides couchii 251
Thamnophis ordinoides hammondii 256
Thamnophis marcianus 261
Thamnophis megalops 263
Thamnophis angustirostris 264
Bibliography 267

INTRODUCTORY REMARKS

A number of years ago, in preparing an account of the reptiles of the Pacific Coast, it became necessary to study with great care the various species and races of garter-snakes of this region. Cope had described and recognized some 17 kinds of garter-snakes from these far-western states, and had left the whole subject in most puzzling confusion. Critical study ${ }^{1}$ of more than 300 fresh alcoholic specimens, in conjunction with the material in the National Museum, including most of the type specimens, showed that many of the forms recognized by Cope were based solely upon individual variations, and as a result of that study the species and races which seemed worthy of recognition by name were reduced to seven.
A. E. Brown, in 1901 and 1903, adopted those conclusions except that he held that Cope's race vidua was identical with T. leptocephala instead of with T. elegans, it having been based upon the type specimens of Kennicott's Eutcenia atrata.

Some years later, Ruthven published an exhaustive account of the garter-snakes. Unfortunately, much of the available material from the Pacific states was not included in his studies. It is probable that more abundant material would have changed his views in several respects as to the relationship and distribution of our garter-snakes. Largely because Ruthven's views and our own have not been in complete accord, we have undertaken to study anew the garter-snakes found west of the Rocky Mountains, and for this purpose have gathered together about 1700 of these snakes from this region. Most of these are the property of the Academy, but several hundred have been borrowed for study from the collections of Stanford University and the University of California. For this privilege we are indebted to Professors Charles H. Gilbert and John O. Snyder of Stanford and Dr. Joseph Grinnell of the University of California. The snakes in the collection of the University of California are distinguished by the letter C prefixed to their numbers; those from Stanford University, by the letter S. When no letter is attached to its number the specimen is in the collection of the Academy. In this renewed study of these snakes Mr. Slevin has assisted in many ways and especially is responsible for the counts of the scales of all the specimens.

[^0]The seven kinds of garter-snakes recognized in the earlier study are here increased, through the recognition of additional subspecies and the inclusion of the snakes of Arizona, to 14 species and subspecies. As regards the original area, however, the increase is three subspecies.

Excepting certain species from Arizona, all of our gartersnakes may be regarded as belonging to two groups or lines of descent. These may be spoken of as the sirtalis and elegans groups. The latter is much the larger. We are unable to follow Ruthven in placing in it Thamnophis angustirostris, but otherwise include about the same forms.

LIST OF SPECIES AND SUBSPECIES

The present study concerns itself with the following species and subspecies:

1. Thamnophis sirtalis parietalis
2. Thamnophis sirtalis concinnus
3. Thamnophis sirtalis infernalis
4. Thamnophis eques
5. Thamnophis ordinoides ordinoides
6. Thamnophis ordinoides atratus
7. Thamnophis ordinoides elegans
8. Thamnophis ordinoides couchii
9. Thamnophis ordinoides biscutatus
10. Thamnophis ordinoides vagrans
11. Thamnophis ordinoides hammondii
12. Thamnophis marcianus
13. Thamnophis megalops
14. Thamnophis angustirostris

These snakes usually may be distinguished by the characters set forth in the following "key," but it often will be necessary to have series of specimens, since individual variation is so great that a single specimen may not show the normal characters and may be referred to the wrong section. Thus, a specimen of T. s. concinnus having eight supralabials might be referred to T. eques, or one of T. o. atratus with seven labials might cause confusion, whereas a series of three or four specimens would immediately clear up the matter by showing these counts to be abnormal ones.

KEY TO THE GARTER-SNAKES OF WESTERN NORTH AMERICA

a.-Lateral light stripe anteriorly not involving scales of the fourth row.
b.-Lateral stripe anteriorly upon scales of the second and third rows.
c.-Supralabials normally seven.
d.-Eye large, posterior genials much longer than anterior,
infralabials usually ten, scale-rows $19-19-17$.
e.-Gastrosteges (146 to 170) and urosteqes (66 to 95)
average fewer in number ($156-166$ and 76 to 85).
f.-Coloration lighter, with broader light lines.
T. sirtalis parietalisp. 190
f^{2}.-Coloration usually darker both above and below, lines often narrower.
T. sirtalis concinnus p. 192
e^{2}.-Gastrosteges (156 to 177) and urosteges (74 to 97) average more numerous (163 to 169 and 83 to 90), coloration lighter than in f^{2}.
T. sirtalis infernalis.p. 198 d^{2}.-Eye much smaller, posterior genials about equal to anterior, infralabials usually fewer than ten, scale-rows usually $17-$ 17-15.
T. ordinoides ordinoides.....p. 215
c^{2}.-Supralabials normally eight.
dd.-Scales usually in not more than 19 rows.
ee.-Gastrosteges average more than 160 , eye large, posterior genials longer.
T. eques
p. 204
ee ${ }^{2}$.-Gastrosteges average fewer than 160 , eye small, genials subequal.
T. ordinoides atratus.p. 224
dd^{2}.-Scale usually in more than 19 rows.
eee.-Dorsal line present over most of body.
ff.-Dorsal line very distinct with sharply defined borders not invaded by dorsal spots, little dark pismentation on gastrosteges.
T. ordinoides elegans.........p. 235
ff^{2}.-Dorsal line with borders invaded by dorsal spots, dark pigmentation of gastrosteges often present. g.-Preocular single, dorsal spots and dark pigmentation of gastrosteges usually very prominent.
T. o. vagransp. 240 g^{2}.-Usually two preoculars, dorsal spots and pigmentation of gastrosteges usually less evident.
T. o. biscutatusp. p. 245 eee e^{2}--Dorsal line usually absent, or short, or indistinct.
fff.-Kemnant of dorsal line usually present, preocular single, infralabials often more than ten.
T. o. couchiip. 251
fff ${ }^{3}$.-No dorsal line, often more than one preocular, infralabials rarely more than ten.
gg.-Lateral lines usually present, dorsal spots fewer, or absent.
T. o. hammondii.
p. 256
gg^{2}.-Lateral lines usually absent, dorsal spots very numerous and prominent.
T. angustirostris p. 264
b^{2}.-Lateral stripe anteriorly upon scales of the third row only, light postoral crescents present.
T. marcianus.
a^{2}.-Lateral light stripe anteriorly involving the scales of the fourth row
T. megalops.p. 263

The following facts also will be of aid in the determination of specimens:

1. Any red in the coloration indicates that the specimen belongs to one of the subspecies of T. sirtalis or to T. o. ordinoides or T. o. atratus.
2. Red on the upper surface of the head seems to be peculiar to the subspecies of T. sirtalis.
3. Red on the belly or in the dorsal line is distinctive of T. o. ordinoides and T. o. atratus.
4. The members of the sirtalis group have a much larger eye and longer posterior genials than are found in the subspecies of T. ordinoides, with the possible exception of T. o. hammondii.
j. The members of the sirtalis group practically always have 19-19-17 rows of scales and a single preocular.
5. In the subspecies of T. ordinoides 21 rows of scales are almost always present, except in T. o. ordinoides and T. o. atratus.
6. Two preoculars are most frequent in T. angustirostris and T. o. biscutatus, but are frequent in T. o. hammondii and T. o. ordinoides.
7. Absence of the dorsal stripe occurs only in four of the subspecies of T. ordinoides-viz., hammondii, couchii, ordinoides, and atratus,-and is usual in only hammondii and couchii.

THE SIRTALIS GROUP

Garter-snakes of the sirtalis type have been found in nearly every state of the Union. They have not definitely been shown to occur in Arizona and New Mexico. Since these snakes are distributed so widely, it is to be expected that racial differences may be found to distinguish the snakes of various portions of this territory. This has been found true, but the geographical races are surprisingly few. Of these, the best known are sirtalis and parietalis, which often have been regarded as distinct species. Those who, with the most adequate material, have studied the question, however, state emphatically that sirtalis.
of the eastern states, and parietalis, of the western, intergrade. It is upon their authority that trinomials are used here. Intergradation, it seems, occurs chiefly in the vicinity of the ninetyfifth $\left(90^{\circ}\right.$ to $\left.100^{\circ}\right)$ Meridian. Thamnophis sirtalis parietalis ranges west from this area of intergradation. The snakes of the northwest coast of Oregon and Washington have been recognized by many authors as a distinct race, under the names Thamnophis parietalis pickeringii or, more properly, Thamnophis sirtalis concinnus.

Several names have been based upon individuals of these races. Thus, parictalis was originally described by Say in 1823 from material collected at Camp Missouri near Council Bluff. Blainville's Coluber infernalis, 1835, from California, is based upon a garter-snake belonging to this group, and Cope's Eutania sirtalis tetratania, from Pitt River, California, also is. Hallowell's type of concinnus (1852) was from Oregon Territory. It represented the dark northwest-coast form which Baird and Girard soon afterwards (1853) named Eutainia pickeringii from material secured at Puget Sound. Cope, in 1892, proposed the name E. sirtalis trilineata for specimens from Port Townsend, Oregon, and Fort Benton, Montana.

General Discussion

While the northwestern coastal snakes thus were distinguished from parietalis at an early date, and have since been recorded by most authors under a different name, no one has claimed that these two races showed any distinctive characters other than those of coloration. Ruthven states that "there is no character which will constantly distinguish specimens of concinnus from parietalis. The narrow dorsal stripe and lateral interspaces of the former will usually do so, but these may be exactly as in parietalis. Still, the fact that nearly all specimens from Washington and northern Oregon, west of the Cascade Range, are characterized by a marked predominance of black pigment and a narrow dorsal stripe justifies their recognition as a separate form." This was the opinion reached as the result of earlier studies set forth in "The Reptiles of the Pacific Coast and Great Basin," and now, with nearly 400 of these snakes before us, this opinion is unchanged. Although there is much variation in the amount of dark pigment and in the width of
the dorsal line these characters are sufficiently constant to serve for the recognition of concinnus as a subspecies distinct from parietalis.

As we pass south and east from the range of concimnus in California and southern Oregon we find a definite increase in the number of ventral plates. The snakes from the northwest coast have fewer gastrosteges and urosteges than the snakes from farther south and east in California. The greater difference is in the gastrostege counts, and these might perhaps be used alone, but the combination of gastrostege and urostege counts helps to bury individual variation. In a comparison of this kind it is, of course, necessary to separate the sexes, for the females have much lower counts than the males.

The following table shows these counts in specimens from many localities:

Table of combined gastrostege and urostege counts

Locality	Males			Females		
	No. of Specimens	Average	Extremes	No. of Specimens	Average	Extremes
British Columbia.	2	249.5	248-251	7	229.9	226-234
Idaho. ${ }_{\text {TwinFallsand }}$ W ashingtonCos.	3	245.3	241-248	8	235.9	229-247
Washington....................	11	242.5	239-250	10	230.1	227-238
Oregon. Clatsop Co	2	248	243-253	1	226	226
Tillamook Co	5	250.8	246-254	9	233.2	228-237
Yamhill Co.	.			1	240	240
Lincoln Co.				1	236	236
Benton Co.	1	255	255	1	250	250
Lane Co..	3	246.3	243-248	1	239	239
Coos Co.	11	247.4	240-253	8	237.6	231-243
Douglas Co	9	248.3	242-255	5	231.2	224-237
Curry Co.	7	246.4	241-251	15	236.5	221-246
Jackson Co				1	253	253
Harney Co	1	248	- 248			
Klamath C	1	254	254			
Utah...	4	251	249-253	4	237.5	231-241
California.						
Del Norte Co	5	246.4	237-256	8	233	230-238
Shasta Co.	1	243	243	2	241.5	239-244
Humboldt Co.	6	251.2	245-254	3	234.3	231-240
Mendocino Co	6	249.7	231-258	5	241.2	231-251
Sonoma Co.	1	251	251	3	229	215-233
Marin Co.	2	254	253-255	1	230	230
Lassen Co. .				1	237	237
Santa Clara Co.	10	258.6	251-267	9	243.7	236-248
Monterey Co.	5	260.4	253-267	3	244.6	236-252
Lake Co.....				1	258	258
Alameda Co.	1	265	265	2		
San Joaquin Co..............	.			1	248	- 248
Merced Co.				1	240	240
Butte Co.	4	260.5	258-266	8	244.3	237-253
Sutter Co.	1	255	255	1	254	254
Mariposa Co.	1	265	265	1	252	- 252
E1 Dorado Co				2	249	245-253
Modoc Co.	5	259.2	251-269	8	246.5	240-258
Los Angeles Co...	2	263.3	254-270	1	245	245
San Bernardino Co		1	248	248

It will be seen that while the average count in males from Washington is 245.5 , the average in males from central and southern California ranges from 255 to 265 ; the extremes of variation in the latter area being 251 and 270, while in Washington specimens they are only 239 and 250. Similar differences are found in the counts of female specimens, the Washington average being 230.1, as against central and southern California averages of from 243.7 to 248 . Intermediate localities show some intermediate counts, but in general it may be seen that the difference is quite great and constant enough to serve well for the separation of a southwestern race, T. sirtalis infernalis, from the northern subspecies, T. sirtalis concinnus. This difference in gastrosteges is clearly shown in Figure 1. It also is evident that T. sirtalis concinnus is not confined to the extreme northwest, but, on the contrary, occupies a strip close to the coast south nearly or quite to San Francisco Bay. In the extreme north T. sirtalis concinnus ranges east far from the coast, for the specimens from northern Idaho are of this dark race and it very possibly may be that Cope's type of trilineata from Fort Benton, Montana, also belongs here. A little farther south, however, concinnus does not range far from the ocean, as is shown by the specimens from Klamath County, Oregon, and Modoc County, California, which represent the race T. sirtalis infernalis.

Thamnophis sirtalis parietalis agrees with T. sirtalis concinnus in having a smaller number of ventral plates than is to be found in T. sirtalis infernalis. It differs from T. s. concinnus and resembles T. s. infernalis in its lighter style of coloration. Specimens at hand do not show where Thamnophis sirtalis parietalis meets the other two subspecies, or whether there are definite areas of intergradation between these forms. One would expect to find such a state of affairs in Nevada, southern Idaho, and perhaps in southeastern Oregon, but, unfortunately, our specimens from these areas are very few. The Idaho snakes are of the dark T. s. concinnus type, while those from Utah are definitely T. s. parictalis.

We thus recognize from the territory west of the Rocky Mountains three subspecies of Thamnophis sirtalis, as follows :-

1. Thamnophis sirtalis parietalis (Say)
2. Thamnophis sirtalis concinnus (Hallowell)
3. Thamnophis sirtalis infernalis (Blainville)

While these three are the only western races of T. sirtalis recognized in this review, it is far from certain that this num-

Figure 1
Fig. 1. This chart shows the number of gastrosteges in specimens of Thamnophis sirtalis concinnus, represented by a continuous line, and Thamnophis sirtalis infernalis, represented by a broken line. The upper half of the chart shows the counts in males, the lower half the counts in females. The chart shows the percentage of the total number of specimens of each sex having each number of gastrosteges, and brings out clearly the fact that in T. s. infernalis these scutes are more numerous than in T. s. concinnus.
ber might not be largely increased if very much larger series were at hand. We were able to distinguish easily, and with but few errors, the snakes of Idaho from those of the Puget region, and those of Palo Alto from those collected in the San Joaquin Valley, as we picked them from a large pile of specimens bearing numbers but no locality labels. The differences are too intangible to describe, but they must exist, and may become more evident when larger series can be studied. Some of the color differences which we now regard as individual may prove to be geographical, and the day may come when the herpetologist, with enormous series, will emulate the ornithologist and mammalogist in the multiplication of subspecies.

Thamnophis sirtalis parietalis (Say)

Prairie Garter-Snake.
Diagnosis.-Squamation similar to that of T. s. concinnus but coloration usually lighter and with more red, thus resembling T. s. infernalis.

Type Locality.-West side of the Missouri River, three miles above the mouth of Boyer's River.

Synonyms.-It seems that no other names have been based upon individuals of this subspecies as here restricted.

Range.-The great plains, west to Utah and perhaps eastern Nevada and southern Idaho.

We have examined specimens of Thamnophis sirtalis parietalis from the following localities:-

1. Bear River, Logan, Cache Co., Utah.
2. Fort Douglas, Salt Lake Co., Utah.
3. Woods Cross, Morgan Co., Utah.

Material.-Only 12 specimens have been studied by us.
Variation.-The loreal is $1-1$ in all. The preoculars are $1-1$ in all. The postoculars are 3-3 in all. The temporals
are $1+2-1+2$ in eight, or $66 \% ; 1+2-1+3$ in three, or 25%; and $1+1-1+2$ in one, or 8%. The supralabials are $7-7$ in nine, or $75 \% ; 7-8$ in two, or 17%; and $\mathrm{S}-8$ in one, or 8%. The infralabials are $10-10$ in seven, or $58 \% ; 9-9$ in four, or 33%; and $9-10$ in one, or 8%. The scale-rows are $19-19-$ 17 in all. The gastrosteges vary in number from 157 to 168 , males having from 164 to 168 , females from 157 to 166 ; the average in five males is 165.4 , in seven females, 161.1 . The urosteges vary from 74 to 87 , males having from 84 to 87 , females from 74 to 79 ; the average in four males is 85.2 , in four females, 76.

These variations are shown in full in the following table of scale-counts. The series, of course, is too small to show the real limits of variation.

Scale counts in Thamnophis sirtalis parietalis

Remarks.-The specimens at hand are insufficient to show the western limits of the range of this subspecies and where and how it meets, or merges with, or is replaced by, T. s. concinnus and T. s. infernalis. The last named form ranges east at least to the western edge of Nevada, while T. s. concinnus seems to occur as far east as northern Idaho or, possibly, Montana. Many more specimens are needed from southern Idaho, eastern Oregon and all parts of Nevada, to throw light on these questions.

Thamnophis sirtalis concinnus (Hallowell)

Northwestern Garter-Snake.

Diagnosis.-Squamation similar to that of T. s. parictalis. Gastrosteges and urosteges average fewer than T. s. infernalis. Coloration usually darker than in either T. s. parictalis or T. s. infernalis.

Type Locality.-Oregon Territory.
Synonyms.-Eutcenia pickeringii Baird \& Girard, 1853 ; type locality Puget Sound. Eutania sirtalis trilineata Cope, 1892; type localities "Port Townsend, Oregon", and Fort Benton, Montana. Eutcenia sirtalis tetratcenia (part?), Cope, 1875, no locality, and 1892, Puget Sound, Washington.

Range.-The coast region of British Columbia, Washington, Oregon, and California south to San Francisco Bay, intergrading toward the south and east in California with T. s. infernalis. In the far north, probably ranging east to Idaho, or possibly Montana.

We have examined specimens of Thammophis sirtalis concinnus from the following localities:-

1. Lillooet River Valley, British Columbia.
2. Union Bay, Bayne Island, B. C.
3. Vancouver Island, B. C.
4. Alberni Valley, Vancouver Island, B. C.
5. Blue Lakes, Twin Falls Co., Idaho.
6. Weiser, Washington Co., Idaho.
7. San Juan Islands, Washington.
8. Lake Crescent, Clallam Co., Wash.
9. Darrington, Snohomish Co., Wash.
10. Seattle, King Co., Wash.
11. Quiniault, Chehalis Co., Wash.
12. Melbourne, Chehalis Co., Wash.
13. Longmire, Pierce Co., Wash.
14. Pierce Co., Wash.
15. Pullman, Whitman Co., Wash.
16. South Bend, Pacific Co., Wash.
17. Holcomb, Pacific Co., Wash.
18. Olney, Clatsop Co., Oregon.
19. Gearheart, Clatsop Co., Ore.
20. Garibaldi, Tillamook Co., Ore.
21. Tillamook, Tillamook Co., Ore.
22. Trask River, Tillamook Co., Ore.
23. Road to Nestucea between Grand Roncle and Dolph, Yamhill Co., Ore.
24. Road between Chitwood and Siletz River, Lincoln Co., Ore.
25. Road between Pioneer and Siletz River, Benton Co., Ore.
26. Alsea River, near Alsea, Benton Co., Ore.
27. Elmira, Lane Co., Ore.
28. June Lake and Siuslaw River, Lane Co., Ore.
29. Junction Lake and Deadwood Creek, Lane Co., Ore.
30. South Fork Coos River, Coos Co., Ore.
31. Sumner, Coos Co., Ore.
32. Coquille, Coos Co., Ore.
33. Myrtle Point, Coos Co., Ore.
34. Takeneitch Creek, Douglas Co., Ore.
35. Canıas Mountains, Douglas Co., Ore.
36. Langlois, Curry Co., Ore.
37. Sixes River, Curry Co., Ore.
38. Port Orford, Curry Co., Ore.
39. Elk Creek, Curry Co., Ore.
40. Between Flores Creek and Rogue River, Curry Co., Ore.
41. Flores Creek, Curry Co., Ore.
42. Vicinity mouth of Rogue River, Curry Co., Ore.
43. Harbor, Curry Co., Ore.
44. Battle Creek, near Eagle Point, Jackson Co., Ore.
45. Smith River, Del Norte Co., California.
46. Crescent City, Del Norte Co., Cal.
47. Requa, Del Norte Co., Cal.
48. Sisson, Siskiyou Co., Cal.
49. Burney Creek, Shasta Co., Cal.
50. Redwood Creek, Orick, Humboldt Co., Cal.
51. Carlotta, Humboldt Co., Cal.
52. Maple Creek, Humboldt Co., Cal.
53. Samoa, Humboldt Bay, Humboldt Co., Cal.
54. Eureka. Humboldt Co., Cal.
55. Covelo, Mendocino Co., Cal.
56. Garcia River, half mile above mouth, Mendocino Co., Cal.
57. Sherwood, Mendocino Co., Cal.
58. Willits, Mendocino Co., Cal.
59. Mendocino, Mendocino Co., Ca1.
60. Albion River, 2 miles below Comptche, Mendocino Co., Cal.
61. Kidd Creek, Sonoma Co., Cal.
62. Skaggs Springs, Sonoma Co., Cal.
63. Napa, Napa Co., Cal.
64. Inverness, Marin Co., Cal.
65. Point Reyes Station, Marin Co., Cal.
66. Tocaloma, Marin Co., Cal.
67. Willow Camp, Marin Co., Cal.

Material.-Two hundred and forty-six specimens have been studied by us.

Variation.-The loreal is $1-1$ in two hundred and thirtyseven specimens (all counted). The preoculars are $1-1$ in two hundred and thirty-six and 2-2 in one. The postoculars are $3-3$ in two hundred and fifteen or 92%; 3-4 in thirteen or $5 \% ; 2-3$ in four, or $2 \% ; 4-4$ in one, and $2-2$ in one. The temporals are $1+2-1+2$ in two hundred and twenty-one, or $94 \% ; 1+1-1+2$ in five, or $2 \% ; 1+2-1+3$ in four, or $2 \% ; 1+1-1+1$ in four, or 2%; and $1+3-1+3$ in one. The supralabials are $7-7$ in one hundred and eighty-three, or 77%; 7 -8 in forty-one, or 17%; and $8-8$ in fourteen, or 6%. The infralabials are 10-10 in one hundred and sixty-nine, or 71%; $9-10$ in forty-one, or 17%; 9-9 in fifteen, or $6 \% ; 8-9$ in eight, or $3 \% ; 8-10$ in two, or 1%; and $10-11$ in two, or 1%. The scale-rows are 19-19-17 in all specimens. The gastrosteges vary in number from 146 to 170 , males having from 150 to 170 , females from 146 to 167 ; the average in ninety-nine males is 164.3, in one hundred and eighteen females, 156.4. The urosteges vary from 66 to 95 , males having from 70 to 95 , females from 66 to 91 ; the average in eighty males is 84.2 , in eighty-eight females, 76.8.

These variations are shown in full in the following table of scale-counts.

Scale counts in Thamnophis sirtalis concinnus

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infra- labials	Preoculars	Postoculars	Loreals	Temporals	$\begin{aligned} & \text { Local- } \\ & \text { ity } \end{aligned}$
S5171	\%	19-19-17-17	159	67 c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	1
S5174	\%	19-19-17-17	157	75 c	$7-7$	10-9	1-1	3-3	1-1	$1+2-1+2$	1
S7212	0^{7}	19-19-17	170	78 c	$7-7$	10-10	1-1	3-3	1-1	$1+2$	2
C2297	\%	$19-19-17-17$	160	78 c	7-7	10-10	$1-1$	3-3	$1-1$	$1+2-1+2$	3
C2298	0^{7}	19-19-17		84c			1-1	3-3	1-1	$1+2+2-1+2+2$	4
C2300	${ }^{\circ}$	19-19-17	170	81c	7-7	8-9	1-1	3-3	$1-1$	$1+2+2-1+2+2$	4
C2301	ले	19-19-17	154	73 c	7-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	4
C2302	0^{7}	19-19-17	164	$62+$	$7-7$	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	4
C2303	\%	19-19-17	159	69c	$7-7$	10-10	$1-1$	3-4	1-1	$1+2+2-1+3+2$	4
C2304	\%	19-19-17	158	76 c	$7-7$	$9-9$	1-1	3-3	1-1	$1+2+2-1+2+2$	4
C2305	\%	19-19-17	160	$69+$	$7-7$	10-9	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	4
C2306	9	19-19-17	161	72c	7-7	10-10	$1-1$	$3-3$	$1-1$	$1+2-1+2$	4
C2307	\%	19-19-17	161	$68+$	$7-7$	10-10	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$
S2649	9	19-19-17-17	165	$44+$	$7-8$	9-10	$1-1$	$3-4$	$1-1$	$1+2-1+2$	5
S2650	9	19-19-17-17	167	78 c	$7-7$	10-9	$1-1$	$3-3$	1-1	$1+2-1+2$	5
S2651	${ }^{7}$	19-19-17-17	163	85 c	$7-7$	9-9	1-1	$3-3$ $3-3$	1-1	$1+2-1+2$ $1+2-1+2$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
S2652	\bigcirc	19-19-17-17	158	74 c	$7-7$	10-10	1-1	$3-3$ $3-3$	$1-1$	$1+2-1+2$	5
S2653	${ }^{7}$	19-19-17-17	160	81 c	$7-7$	r-10	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$ $1+2-1+2$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
S2654	0^{7}	19-19-17-17	164	85c	$7-7$	10-10	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$ $1+2-1+2$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$
S2655	9	19-19-17-17	156	78 c	$7-8$	10-10	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$ $1+2-1+2$	5
S2656	0^{7}	19-19-17-17	163	84 c	$7-7$	$10-10$	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$ $1+2-1+2$	5
S2657	9	$19-19-17-17$	154	$37+$	$7-7$	10-10	1-1	3-3	1-1	$1+2=1+2$	5
S2658	0^{7}	19-19-17-17	165	82c	$7-7$	10-10	$1-1$	$3-3$	1-1	$1+2-1+2$ $1+2-1+2$	5
S2659	\%	19-19-17-17	158	72 c	7-7	10-10	$1-1$	3-4	1-1	$1+2-1+2$ $1+2 \longrightarrow 1+2$	5
S2663	\bigcirc	19-19-17-17	155	73 c	$8-8$	10-10	$1-1$	3-3	$1-1$	$1+2=1+2$	5
S1686	9	19-19-17-17	162	80 c	$7-8$	10-10	1-1	$3-3$ $3-3$	$1-1$	$1+2-1+2$	6
S6506	9	19-19-17-17	166	$79+$	$7-7$	10--9	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$	7
S6514	\bigcirc	19-19-17-17	161	77	$7-7$	10-10	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$	8
30418	0^{7}	19-19-17	163	$62+$	7-7	10-10	$1-1$	3-3	1-1	$1+2+2-1+2+2$	8
30419	\%	19-19-17	158	73 c	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	8
30420	\%	19-19-17	157	71c	$7-7$	10-10	1-1	$3-3$	1-1	$1+2+2-1+1+2$	8
30421	\%	19-19-17	157	68 c	$7-7$	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	8
30509	0^{7}	19-19-17	164	81 c	$7-7$	$10-9$	1-1	$3-3$ $3-3$	$1-1$	$1+1-1+1$	9
30510	¢	19-19-17	156	73 c	7-7	10-10	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	10
S4181	\%	19-19-17-17	167	$53+$	$7-7$	10-10	1-1	3-3	1-1	$1+2-1+2$	10
29941	\%	19-19-17	158	$63+$	8-8	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	11
29942	\%	19-19-17	160	67 c	7-7	9-8	1-1	3-3	$1-1$	$1+2+2-1+2+2$	11
29943	0^{7}	19-19-17	156	70 c	8-8	9-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	11
29944	\%	19-19-17	160	$47+$	8-8	10-9	1-1	3-3	1-1	$1+2+2-1+2+2$	11
29945	${ }^{7}$	19-19-17	161	82c	$7-7$	9-9	1-1	3-3	1-1	$1+2+2-1+2+2$	11
29946	0^{7}	19-19-17	159	80 c	7-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	11
29947	9	19-19-17	160	72 c	$7-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	11
29948	\%	19-19-17	161	73 c	$7-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+1$	11
29949	9	19-19-17	157	$59+$	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	11
29928	안	19-19-17	160	68c	$7-8$	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	12
29929	0^{7}	19-19-17	166	84 c	$7-7$	9-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	12
30396	0^{7}	$19-19-17$	161	83 c	$7-8$	10-10	$1-1$	3-3	$1-1$	$1+2+2-1+2+2$	13
S5151	0^{7}	19-19-17-17	167	82c	$7-7$	10-10	1-1	$3-3$	$1-1$	$1+2-1+2$	14
S2660	0^{7}	$19-19-17-17$	157	$72+$	$7-7$	10-9	1-1	3-3	$1-1$	$1+2-1+2$	15
S2661	0^{7}	$19-19-17-17$	162	81 c	7-7	$9-9$	1-1	3-3	$1-1$	$1+2-1+2$	15
S2662	O^{7}	$19-19-17-17$	163	76 c	$7-7$	9-9	1-1	$3-3$	$1-1$	$1+2-1+2$	15
29881	0^{7}	19-19-17	167	79c	$7-7$	10-10	1-1	3-3	1-1	$1+2-1+2+2$	16
29882	\bigcirc	19-19-17	160	$71+$	$7-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	16
29920	\%	19-19-17	161	68c	$7-7$	10-10	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	17
29921	0^{7}	$19-19-17$	165	79 c	$7-7$	10-10	$1-1$	$3-3$ $3-3$	$1-1$	$1+2+2-1+2+2$	17
29872	0^{7}	$19-19-17$	164	79 c	$7-7$	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	18
29873	0^{7}	$19-19-17$	166	$61+$	$7-7$	10-10	1-1	$3-3$	$1-1$	$1+2+2-1+1+2$	18
29812	0^{7}	19-19-17	165	88 c	$7-7$	9-10	1-1	$3-3$	$1-1$	$1+1+2-1+2+2$	19
29813	0	$19-19-17$	164	$64+$		10-10	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$ $1+2+2-1+2+2$	19
29814	0^{*}	$19-19-17$	160	$48+$	7-7	$9-9$	$1-1$	$3-3$	1-1	$1+2+2-1+2+2$	19
29815	¢	19-19-17	159	67c	$8-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	19
29715	0^{7}	19-19-17	168	$75+$	$7-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	20
29716	아	19-19-17	158	$58+$	$7-7$	10-10	1-1	3-3	1-1	$1+2-1+2$	20
29717	0^{7}	19-19-17	166	$83+$	$7-7$	10-9	1-1	3-3	$1-1$	$1+2-1+2$	20
29718	0^{7}	19-19-17	167	79c	$7-7$	10-10	1-1	3-3	1-1	$1+2-1+2$	20
29719	\bigcirc	19-19-17	158	76 c	$7-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	20
29696	0^{7}	19-19-17	165	$77+$	7 -7	10-10	$1-1$	3-3	1-1	$1+2-1+2$	21
29698	\bigcirc	19-19-17	158	$71+$	$7-7$	10-8	1-1	4-3	1-1	$1+2+2-1+2+2$	21
29699	9	$19-19-17$	156	70 c	$7-7$	10-10	$1-1$	$3-3$	$1-1$	$1+2+2-1+2+2$ $1+2+2-1+2+2$	21
29700	$\stackrel{\square}{8}$	19-19-17	160	69c	$7-8$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	21
29701	9	19-19-17	161	$45+$	7-7	9-8	1-1	3-3	1-1	$1+2+2-1+2+2$	21
29702	0^{7}	19-19-17	165	88 c	$7-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	21
29703	9	19-19-17	159	72 c	$7-7$	$9-10$	1-1	3-3	1-1	$1+2+2-1+2+2$	21
29704	앙	19-19-17	158	78c	8-7	$9-9$	1-1	3-3	$1-1$	$1+2+2-1+2+2$	21
29705	σ^{7}	$19-19-17$	165	$77+$	$7-7$	10-9	1-1	$3-3$	1-1	$1+2+2-1+2+2$	21

Scale counts in Thamnophis sirtalis concinnus-Continued

Number	Sex	Scale rows	Gastrosteges	$\begin{aligned} & \text { Uro- } \\ & \text { steges } \end{aligned}$	Supra- labials	Infra- labials	$\begin{aligned} & \text { Pre- } \\ & \text { oculars } \end{aligned}$	Postoculars	Loreals	Temporals	$\begin{aligned} & \text { Local- } \\ & \text { ity } \end{aligned}$
29706	\bigcirc	19-19-17	163	74 c	7-7	9-8	1-1	3-3	1-1	$1+2+2-1+2+2$	21
29734	\%	19-19-17	157	$71+$	7-7	10-10	1 -1	3-3	1 -1	$1+2+2-1+2+2$	22
29735	O	19-19-17	157	$20+$	8-8	9-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	22
29736	\%	19-19-17	161	74 c	7-7	10-10	1-1	4-3	1-1	$1+2+2-1+2+2$	22
29737	\%	19-19-17	161	72c	7 -7	10-10	1-1	3-3	1 -1	$1+2-1+2$	22
29738	${ }^{\circ}$	19-19-17	165	87 c	7-7	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	22
29739		19-19-17	161	75 c	7 -7	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	22
29740	${ }^{\circ}$	19-19-17	169	85 c	7-7	9-9	1-1	3-3	1 -1	$1+2+2-1+2+2$	22
29741	σ^{7}	19-19-17	163	$54+$	7-7	10-10	$1-1$	3-3	1 -1	$1+2+2-1+2+2$	22
S5307	\%	19-19-17-17	160	80 c	7-7	9-10	1-1	3-3	1-1	$1+2-1+2$	23
S4426	\bigcirc	19-19-17-17	161	${ }^{75} \mathrm{c}$	7-7	10-10	1 -1	$3-3$ $3-3$	1 -1	$1+2-1+2$	24
S4512	0^{4}	19-19-17-17	169	86 c	7-7	10-10	1-1	3-3	$1-1$	$1+2-1+2$	25
S4504	\%	19-19-17-17	165	85 c	7-7	10-10	1-1	3-3	$1-1$	$1+2-1+2$	26
29622		19-19-17	157	$23+$	7-7	9-9	1 -1	4-3	1 -1	$1+2+2-1+2+2$	27
29623	${ }^{\circ}$	19-19-17	165	83 c	7-7	10-10	1-1	3-	1 -1	$1+2+2-1+2+2$	27
29624	${ }^{\circ}$	19-19-17	162	86 c	7 -7	9-10	1 -1	3-3	1 -1	$1+2+2-1+1+2$	27
29625	σ^{*}	19-19-17	164	79 c	7-7	10-10	1 -1	3-3	$1-1$	$1+2+2-1+2+2$	27
S4501	\%	19-19-17-17	160	79 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	28
S 4501 (a)		19-19-17	157	70 c	7-7	9-9					29
S4501 (b)		19-19-17	150	$\begin{aligned} & 77+ \\ & 72 \mathrm{c} \end{aligned}$							29 29
S4501 (c)		19-19-17	159 165	$\begin{aligned} & 78 \mathrm{c} \\ & 86 \mathrm{c} \end{aligned}$	7-7	9-9					29 29
S4501 (e)		19-19-17	158	78 c	7-7						29
S4501 (f)		19-19-17	162	89 c	7 -7	\cdots	i-1	3-3		$i+2-1+2$	29
S4501 (g)		19-19-17	161	78 c	7 -7					29
S4501 (h)	\bigcirc	19-19-17	158	77 c	7 -7						29
S4501 (i)	O'	19-19-17	161	80c	8 -7					$1+2$	29 30
S4484 (a)		19-19-17	169 158	90 c 57	8 8-7	${ }_{10-10}^{10-10}$	${ }_{1-1}^{1-1}$	3-3	${ }_{1-1}^{1-1}$	$1+2-1+2$ $1+2=1+2$	30 30
S4484 (c)		19-19-17	165	93 c	7-7	10-10	2 -2	3-3	1 -1	$1+2-1+2$	30
S4484 (d)		19-19-17	167	87c	7 -7	10-10	1-1	3-3	1 -1	$1+2-1+2$	30
S4484 (e)		19-19-17	157	90c	7-7	10-10	1 -1	3-3	1 -1	$1+2-1+2$	30
S4484 (f)		19-19-17	168	92 c	8 -7	10-10	1 -1	3	1 -1	$1+2=1+2$	30
${ }_{\text {S }}^{\text {S4484 (g) }}$		19-19-17	156	80 c	7 -7	10-10	1 -1	$3-3$ $3-3$	1 1-1	$1+2=1+2$	30
${ }_{\text {S4446 }}{ }^{\text {S484 }}$	\%	19-19-17-17	156	79c	7 7-7	$10-10$ $10-10$	${ }_{1}^{1-1}$	$3-3$ $3-3$	$1-1$	$1+2=1+2$	31
S 4430	\%	19-19-17-17	157	$51+$	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	32
29441	${ }^{4}$	19-19-17	161	85 c	7-7	9-10	1-1	3-3	1-1	$1+2+2-1+2+2$	33
29442	${ }^{\circ}$	19-19-17	160	85 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	33
29443	\%	19-19-17	160	76 c	7-8	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	33.
29444	0°	19-19-17	161	88 c	7-8	9-9	1 -1	$3-3$ $3-3$	1 -1	$1+2-1+2$	33 33
29445	${ }^{\circ}$	19-19-17	${ }_{161}^{166}$	${ }_{821}^{81}+$	$7-7$ $7-7$	$10-10$ $10-10$	${ }_{1-1}^{1-1}$	$3-3$ $3-2$	${ }_{1-1}^{1-1}$	$1+2+2-1+2+2$ $1+2+2-1+2+2$	$\begin{array}{r}33 \\ 33 \\ \hline\end{array}$
29446	${ }^{\circ}$	$19-19-17$ $19-19-17$	161 161	82 c $67+$	$7-7$ $7-8$	$10-10$ $8-10$	${ }_{1-1}^{1-1}$	$3-2$ $3-3$	${ }_{1-1}^{1-1}$	$1+2+2-1+2+2$ $1+2-1+1$	33
29448	${ }^{\text {or }}$	19-19-17	168	$66+$	7-7	10-10	1-1	4-3	$1-1$	$1+1+2-1+1+2$	33
29449	${ }^{\circ}$	19-19-17	164	$42+$	7-7	10-10	1-1	$3-3$	1 -1	$1+2+2-1+2+2$	33
29450	${ }^{7}$	19-19-17	167	78 c	8 -7	10-10	1-1	$3-3$	1 -1	$1+2+2-1+2+2$	33
29451	\%	19-19-17	158	81 c	7 -7	10-10	1 -1	3-3	1 -1	$1+2+2-1+2+2$	33
29452	${ }^{\circ}$	19-19-17	157 165	81 c 87 c	7 7-7	$10-9$ $10-10$	${ }_{1-1}^{1-1}$	$4-4$ $3-3$	${ }_{1}^{1-1}$	$1+2-1+2$	33 33
29454	\%	19-19-17	161	77 c	7-7	10-9	1 -1	3-3	1 -1	$1+2+2-1+2+2$	33
29455	0^{4}	19-19-17	164	80 c	7-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	33
29456	O	19-19-17	155	76 c	7-7	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	33
29457	${ }^{\circ}$	19-19-17	153	87 c	7-7	9-9	$1-1$	3-3	1-1	$1+2+2-1+2+2$	33
29458	${ }^{3}$	19-19-17	163	89 c	$7-7$	9 -9	1 -1	$3-3$	$1-1$	$1+2+2-1+2+2$	
29459 29460	${ }^{7}$	19-19-17	167 167	86 c 82 c	$7-7$ $7-7$	$8-9$ $8-9$	1 1-1	$3-3$ $3-3$	${ }_{1-1}^{1-1}$	$1+2+2-1+2+2$ $1+1+2-1+2+2$	33 33 3
29461	O	19-19-17	160	81 c	7-8	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	33
S4218	\bigcirc	19-19-17-17	163	$20+$	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	33
S4415	0^{7}	19-19-17-17	165	86 c	7 -7	10-10	1 -1	3-3	1 -1	$1+2-1+2$	34
S4416		19-19-17-17	154	72 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	34
S4417	${ }^{\circ}$	19-19-17-17	164	81 c	$7-7$	$10-10$	1-1	3-3	$1-1$	$1+2-1+2$	
S4418 $\mathbf{S 4 4 1 9}$	${ }_{8}$	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17-17\end{aligned}\right.$	151	888 c	7-7	$\stackrel{10-9}{10-10}$	${ }_{1-1}^{1-1}$	$3-3$ $3-3$	${ }_{1-1}^{1-1}$	$1+2-1+2$ $1+3-1+2$	34 34
S4420	${ }^{\circ}$	19-19-17-17	165	89 c	7-7	10-10	1 -1	3-3	1 -1	$1+2-1+2$	34
S4421		19-19-17-17	157	$39+$	8 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	34
S4422	¢	19-19-17-17	159	73 c	8-8	10-10	1 -1	3-3	$1-1$	$1+2-1+2$	34
S4423	\%	19-19-17-17	158	66 c	7-7	10-10	$1-1$	3-3	1 -1	$1+2=1+2$	34
S4424	${ }^{\circ}$	19-19-17-16	165	86 c	7 -7	10-10	$1-1$	4-3	1-1	$1+2=1+2$	
S4425 S 4493	O^{7}	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17-17\end{aligned}\right.$	167 160	88 c 77 c	7-7	$10-10$ $10-9$	${ }_{1-1}$	$3-3$ $3-3$	${ }_{1-1}^{1-1}$	$1+2=1+2$ $1+2$	34 34
S4494	O^{7}	19-19-17-17	160	87 c	7-7	10-10	1-1	3-3	$1-1$	$1+2=1+2$	34
S4495	$\mathrm{O}^{\prime \prime}$	19-19-17-17	165	85 c	7 -7	9-10	1-1	3-3	1 -1	$1+2-1+2$	34
S4496	\%	19-19-17-17	157	${ }^{74 \mathrm{c}}$	7 7-7	9-10	1-1	3-3	1 -1	$1+2-1+2$	34
S4497	σ^{7}	$\|19-19-17-17\|$	160	85c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	34

Scale counts in Thamnophis sirtalis concinnus-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Local. ity
S4423	\%	19-19-17	158	66c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	34
S 4423 (a)	.	19-19-17	159	80 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	34
S4423 (b)		19-19-17	155	72c	8 -7	10-10	1 -1	3-3	1-1	$1+2-1+2$	34
S4423 (c)	0°	19-19-17	161	81 c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	34
S4423 (d)	.	19-19-17	154	71 c	7-7	9-10	1 -1	3-3	1-1		34
S4423 (e)		19-19-17	154	75 c	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	34
S4423 (f)	.	19-19-17	154	71 c	7-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	34
S4423 (g)		19-19-17	155	70 c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	34
S4423 (h)	${ }^{\circ}$	19-19-17	158	78 c	$7-7$	10-9	1-1	3-3	1-1	$1+2-1+2$	34
S4496	\bigcirc	19-19-17	157	74 c	7-7	9-10	1-1	3-3	1-1	$1+2-1+2$	34
S4496 (a)	σ^{7}	19-19-17	155	79 c	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	34
S4496 (b)	.	19-19-17	150	75c	7 -7	9-10	1-1	3-3	1-1	$1+2-1+2$	34
S4496 (c)		19-19-17	156	78 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	34
S4496 (d)		19-19-17	155	73c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	34
S4496 (e)		19-19-17	153	74 c	8 -7	10-10	1-1	$3-2$	1-1	$1+2-1+2$	34
S4496 (f)	${ }^{*}$	19-19-17	162	85 c	7-8	10-10	1-1	3-3	1-1	$1+2-1+2$	34
S4496 (g)	0°	19-19-17	159	84 c	7-7	10-9	1-1	3-3	1-1	$1+2-1+2$	34
S4496 (h)		19-19-17	158	72c	7-7	10-10	1 -1	3-3	1-1	$1+2-1+2$	34
54496 (i)		19-19-17	154	81 c	7-7	9-8	1 -1	3-2	1-1	$1+2-1+2$	34
29494	\%	19-19-17	160	$77+$	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	35
29418	${ }^{\circ}$	19-19-17	164	$78+$	7-7	10-9	1 -1	3-3	1-1	$1+1+2-1+1+2$	36
S4449	0°	19-19-17-17	167	82 c	7-7	10-10	1 -1	3-3	1-1	$1+2-1+2$	37
S4450	\bigcirc	19-19-17-15	159	81 c	$8-7$	10-10	1 -1	3-3	1-1	$1+2-1+2$	37
29390	\%	19-19-17	156	74 c	7 -7	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	38
29391	\%	19-19-17	158	78 c	8-7	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	38
29392	0^{7}	19-19-17	162	87 c	7 -7	10-10	1-1	3-4	1-1	$1+2+2-1+2+2$	38
29393	\%	19-19-17	157	83 c	7 -7	10-10	1 -1	3-3	1-1	$1+2+2-1+2+2$	38
29394	\bigcirc	19-19-17	155	81 c	7-7	10-10	1-1	3-4	1 -1	$1+2+2-1+2+2$	38
29395	\%	19-19-17	157	77 c	7 -7	10-10	1-1	3-3	1-1	$1+2+3-1+2+2$	38
29396	\%	19-19-17	156	79c	8-7	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	38
S4443	0^{7}	$19-19-17-17$	160	86 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	39
S4463	\%	19-19-17-17	161	$79+$	$7-8$	10-10	1-1	3-3	1 -1	$1+2-1+2$	40
S4451	${ }^{\circ}$	19-19-17-17	161	86 c	8 -7	10-10	1 -1	3-3	1-1	$1+2-1+2$	41
S4437	\%	19-19-17-17	158	77 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	42
S4438	\%	19-19-17-17	157	78 c	7-8	8-9	1-1	3-3	1-1	$1+2-1+2$	42
S4439	\%	19-19-17-17	155	81 c	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	42
29262	\%	19-19-17	161	83 c	8-8	11-10	1-1	3-3	1-1	$1+2+2-1+2+2$	43
29264	\%	19-19-17	156	$46+$	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	43
29265	\%	19-19-17	154	85 c	8 -7	10-10	1 -1	3-3	1-1	$1+2+2-1+2+2$	43
29266	σ^{7}	19-19-17	165	86 c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	43
29267	\bigcirc	$19-19-17$	160	84 c	7 -7	10-10	1-1	3-3	1-1	$1+3+2-1+2+2$	43
S4441	\%	19-19-17-17	162	91 c	7 -7	10-10	1 -1	3-3	1-1	$1+2-1+2$	44
29212	0^{7}	19-19-17	164	77 c	7-7	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	45
29222	\%	19-19-17	152	78 c	8-8	10-10	1-1	$2-2$	1-1	$1+2+2-1+2+2$	46
29231	0^{7}	19-19-17	163	89 c	8 -7	10-9	1-1	$3-3$	1-1	$1+2+2-1+2+2$	46
29232	8	19-19-17	152	78 c	7-7	9-10	1-1	3-3	1-1	$1+2+2-1+2+2$	46
29233	${ }^{\circ}$	19--19-17	156	81 c	7-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	46
29234	\%	19-19-17	156	75c	7 -7	10-10	1 -1	3-3	1 -1	$1+2-1+2$	46
29235	\%	19-19-17	158	80 c	7 -7	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	46
29083	\%	19-19-17	153	$19+$	7-8	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	47
29084	${ }^{\circ}$	19-19-17	161	$86+$	7-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	47
29086	${ }^{\circ}$	19-19-17	160	89 c	7 -7	10-10	1 -1	$3-3$	1-1	$1+2+2-1+2+2$	47
29087	0°	19-19-17	164	92 c	8 -8	9-10	1-1	3-3	1-1	$1+2+2-1+2+2$	47
29088	\%	19-19-17	158	77 c	7 -8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	47
29089	8	19-19-17	157	78 c	7-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	47
29092	8	19-19-17	152	78 c	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	47
S6609	\%	19-19-17-17	155	80 c	7-8	10-10	1-1	3-3	1-1	$1+2-1+2$	47
S6610	\bigcirc	19-19-17-17	152	$35+$	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	47
S4314	0^{7}	19-19-17-17	166	$77+$	7 -7	10-10	1-1	3-3	1-1	$1+3-1+2$	48
S6441	0^{7}	$19-19-17-17$	167	76 c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	49
S6442	\%	$19-19-17-17$	164	80 c	8 -8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	49
S6508	\%	19-19-17-17	160	79c	7 -7	11-10	1-1	3-4	1-1	$1+2-1+2$	49
S4261	\bigcirc	19-19-17-17	155	85 c	7-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	50
28828	0^{7}	19-19-17	157	95 c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	51
28835	\%	19-19-17	156	75c	7-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	51
28836	0^{7}	19-19-17	163	91c	8-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	51
28838	${ }^{7}$	19-19-17	164	89c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	51
S4262	0^{7}	19-19-17-17	161	91 c	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	52
S4263 C 2321	O7	$19-19-17-17$ $19-19-17$	161 155	$48+$ 77 c	7 7-7	10-10	1-1	$3-3$ $3-3$	1 -1	$1+2-1+2$	52
$\mathrm{C}_{\mathrm{C} 2321}$	$\mathrm{O}^{\text {O }}$	$19-19-17$ $19-19-17$	155 159	77 c 86 c	7-7	$10-10$ $10-9$	1-1	$3-3$ $3-3$	1-1	$1+2+2-1+2$ $1+2+2-1+2+1$	53
C2319	${ }^{\circ}$	19-19-17	161	90 c	7-7	9-9	$1-1$	3-3	1-1	$1+2+1-1+2+2$	54
C5318	\%	19-19-17	162	84 c	7-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	55
C5319	8	19-19-17	165	86c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	55
C5320	0^{7}	19-19-17	165	91c	7-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	55

Scale counts in Thamnophis sirtalis concinnus-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Lncality
S4246	\%	19-19-17-17	151	$76+$	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	56
S4235	\%	19-19-17-17	146	83 c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	56
C1162	0^{7}	19-19-17	164	91c	7 -7	10-9	1-1	3-3	1-1	$1+2+2-1+2+2$	57
C1164	8	19-19-17	156	79 c	7 -7	10-9	1-1	3-4	1-1	$1+2+1-1+2+1$	57
28667	0^{7}	19-19-17	160	83 c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	58
28668	$\%$	19-19-17	158	$57+$	7-7	10-10	1 -1	3-3	1-1	$1+2+2-1+2+2$	58
28669	0	19-19-17	167	88 c	7 -7	10-9	1-1	3-3	1 -1	$1+2+2-1+2+2$	58
C5325	\%	19-19-17	163	80 c	7-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	58
C5316	${ }^{\prime \prime}$	19-19-17	150	81 c	8-7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	59
S4239	8	19-19-17-17	153	78 c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	60
27981	\%	19-19-17	158	$27+$	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	61
28022	\%	19-19-17	160	$54+$	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2+2$	62
28023	\%	19-19-17	154	79 c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	62
28026	0^{7}	19-19-17	160	91 c	7 -7	$9-10$	1-1	3-3	1-1	$1+2+2-1+2+2$	62
28027	\%	19-19-17	160	79 c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	62
28028	\%	19-19-17	157	82 c	7 -7	10-9	1-1	3-3	1-1	$1+2+2-1+2+2$	62
C4315	9	19-19-17	158	$44+$	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	63
C5294	\bigcirc	19-19-17	153	77 c	7-8	10-9	1-1	$4-3$	1-1	$1+2+3-1+2+3$	64
C5289	${ }^{\circ}$	19-19-17	163	92 c	7 -7	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	65
27815		$19-19-17$	161	92 c	7 -7	10-10	$1-1$	3-3	1-1	$1+3-1+3$	66
39682	${ }^{7}$	$\mid 19-19-17-17$	167	$68+$	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	67

Remarks.-While a dark style of coloration with a tendency toward narrow lines is characteristic of this subspecies, this type of coloration is by no means constant. Specimens similar in color to the type of pickeringii seem to be very rare even in the far north. In general, the difference from T. s. parietalis and T. s. infcrnalis lies in an increase in the dark pigment, both dorsally and ventrally, rather than in a marked narrowing of the lines or a reduction in the amount of red in the coloration. Some specimens from Oregon are no darker than Californian T. s. infernalis, and show red heads and often much red on the body. Others are quite dark. Upon the whole, and notwithstanding wide individual variation everywhere, it may be said that the coloration becomes lighter toward the south and is gradually changed to that of T. s. infernalis. This color change seems to occur more rapidly (i. e., farther north) than the change in number of gastrosteges. The latter change has been discussed under the heading The Sirtalis Group.

Thamnophis sirtalis infernalis (Blainville)

Pacific Garter-Snake.
Diagnosis.-Gastrosteges and urosteges average more numerous than in T. s. parictalis and T. s. concinnus. Coloration usually lighter, with broader lines and more red than in T. s. concinnus, similar to that of T. s. parietalis.

Thumnophis sirtalis infcruolis, Pacific Garter-Snake:-Photograph from living adult male (No. 39197) collected at Pacific Grove, Monterey County. California, May 11, 1914.

4x

Type Locality.-California.
Synonyms.-Eutcnia sirtalis tetratcuia (part?), Cope, 1875, no locality, and 1891, Pitt River, Cal.

Range.-California east and south of the northwest coast region, south to San Bernardino County, east to Modoc County, and Lake Tahoe. In Oregon about the Klamath Lakes.

We have examined specimens of Thammophis sirtalis infernalis from the following localities :-

1. Oroville, Butte Co., California.
2. West Butte, Sutter Co., Cal.
3. Kelseyville, Lake Co., Cal.
4. Fyffe, El Dorado Co., Cal.
5. Yosemite Valley, Mariposa Co., Cal.
6. Fresno, Fresno Co., Cal.
7. Isabella, Kern Co., Cal.
8. Weldon, Kern Co., Cal.
9. Buttonwillow, Kern Co., Cal.
10. Los Baños, Merced Co., Cal.
11. Banta, San Joaquin Co., Cal.
12. Walnut Creek, Contra Costa Co., Cal.
13. Berkeley, Alameda Co., Cal.
14. Palo Alto, Santa Clara Co., Cal.
15. Stanford University, Santa Clara Co., Cal.
16. Castro, Santa Clara Co., Cal.
17. Pacific Grove, Monterey Co., Cal.
18. Seaside, Monterey Co., Cal.
19. Carmel, Monterey Co., Cal.
20. Mount Mars, Monterey Co., Cal.
21. El Nogal, Los Angeles Co., Cal.
22. Colton, San Bernardino Co., Cal.
23. Bixby, Los Angeles Co., Cal.
24. Los Angeles, Los Angeles, Co., Cal.
25. Merrill, Klamath Co., Oregon.
26. Goose Lake, Modoc Co., Cal.
27. Davis Creek, Modoc Co., Cal.
28. Warner Mountains, Modoc Co., Cal.
29. Cedarville, Modoc Co., Cal.
30. Lake Tahoe, El Dorado Co., Cal.
31. Snelling, Merced Co., Cal.
32. Coulterville, Mariposa Co., Cal.
33. Pleasant Valley, Mariposa Co., Cal.
34. Marshy Meadow, Yosemite National Park, Cal.
35. Klamath Falls, Klamath Co., Oregon.

Material.-We have used one hundred and thirty-five specimens in this study.

Variation.-The loreal is $1-1$ in all. The preoculars are $1-1$ in all except one specimen with $1-2$ and two with $2-2$. The postoculars are 3-3 in ninety-five, or 73%; 3-4 in twenty-five, or $19 \% ; 4-4$ in seven, or $5 \% ; 2-3$ in three, or 2%; and $2-4$ in one, or 1%. The temporals are $1+2-1+2$ in one hundred and fourteen, or $88 \% ; 1+2-1+3$ in eight, or $6 \% ; 1+1-1+2$ in three, or $2 \% ; 1+1-1+1$ in one, or $1 \% ; 2+2-2+2$ in one, or $1 \% ; 1+3-1+3$ in one, or 1%; and $1+2-2+2$ in one, or 1%. The supralabials are $7-7$ in one hundred and four, or $80 \% ; 7-8$ in seventeen, or $13 \% ; 8-8$ in eight, or 6%; and $9-9$ in one, or 1%. The infralabials are $10-10 \mathrm{in}$ one hundred and ten, or $85 \% ; 9-10$ in thirteen, or $10 \% ; 9-9$ in three, or $2 \% ; 10-11$ in two, or 1%; and $9-8$ in two, or 1%. The scale-rows are 19-19-17 in one hundred and thirty-four and 19-21-1917 in one. The gastrosteges vary in number from 156 to 177 , males having from 161 to 175 , females from 156 to 174 ; the average in forty-seven males is 168.7, in eighty-one females, 163.7. The urosteges vary from 74 to 97 , males having from 82 to 97 , females from 74 to 93 ; the average in thirty-eight males is 89.8 , in fifty females, 82.8 .

These variations are shown in full in the following table of scale-counts.

Scale counts in Thammophis sirtalis infernalis

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
C4023	¢	19-19-17	164	83 c	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	1
C4024	¢	19-19-17	161	79 c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	1
C4025	Or	19-19-17	171	$47+$	7 -7	10-10	1 -1	$4-3$	$1-1$	$1+2+2-1+2+2$	1
C4026	\%	19-19-17	163	74 c	7-7	-10	1 -1	3-3	1 -1	$1+2+2-1+2+2$	1
C 4027	0^{7}	19-19-17	169	90 c	7 -7	10-10	1-1	3-4	1 -1	$1+2+2-1+2+2$	1
C4028	0^{7}	19-19-17	172	$36+$	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	1
C4029	0^{7}	19-19-17	167	91c	7-7	10-10	1 -1	3-3	1-1	$1+2+2-1+2+2$	1
C4030	\%	19-19-17	163	85 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	1
C4031	${ }^{\circ}$	19-19-17	172	94 c	7 -7	10-9	1-1	3-3	1 -1	$1+2+2-1+2+2$	1
C4032	0^{7}	19-19-17	166	93 c	7-7	10-10	$1-1$	4-4	1-1	$1+2+2-1+2+3$	1
C4033	\%	19-19-17	163	90 c	7-7	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	1
C4034	$\stackrel{+}{9}$	19-19-17	160	85c	7-8	10-10	2-2	3-3	1-1		1
C4035	\%	19-19-17	162	82 c	7 -7	10-10	1 -1	3-3	$1-1$	$1+2+2-1+2+2$	1
C4036	\%	19-19-17	165	$57+$	7-7	10-10	1-1	3-4	$1-1$	$1+2+2-1+2+2$	1
C4037	\%	19-19-17	164	$76+$	7-8	10-10	1 -1	3-3	1 -1	$1+2-1+2+2$	1
C4038	¢	19-19-17	160	$26+$	7-7	$9-10$	1-1	3-3	1-1	$1+2-1+2$	1
C4020	\%	19-19-17	167	87 c							2
C4021	${ }^{7}$	19-19-17		85 c							2
C4022	${ }^{\prime}$	19-19-17	165	90 c	7 7-7	10-10	1-1	$3-4$	1 -1	$1+2+2-1+2+2$	2
S1742	¢	19-19-17-17	165	93 c	7 -7	10-10	1 -1	3-3	1-1	$1+1-1+2$	3
S4367	\%	19-19-17-17	164	89 c	8 -7	10-10	$1-1$	4-3	$1-1$	$1+3-1+2$	4
C2488	\%	19-19-17	169	$46+$	7 -7	9-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	5
C2489	0^{7}	19-19-17	170	95c	7 -7	10-10	1 -1	3-3	1-1	$1+2+2-1+2+2$	5
C2491	\%	19-19-17	162	$30+$	7-7	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	5
C2490	\%	19-19-17	166	86 c	8 -7	10-10	1 -1	3-3	$1-1$	$1+2-1+2$	5
S1691	\%	19-19-17-17	158	$48+$	8-7	10-10	1-1	3 -3	1 -1	$1+2-1+2$	5
S4140	\%	19-19-17-17	168	81c	7 -7	10-10	1-1	$3-3$	1-1	$1+2-1+2$	
S4141	\%	19-19-17-17	168	$44+$	7-7	10-10	1-1	$3-3$	1 -1	$1+2-1+2$	6
S4142	\%	19-19-17-17	162	82 c	8-8	10-10	1-1	3-3	1 -1	$1+2-1+2$	6
S4143	아	19-19-17-17	164	81 c	7 -7	9-9	1 -1	$3-3$	1 -1	$1+2-1+2$	6
S4145	\%	19-19-17-17	163	$60+$	7 -7	10-10	1 -1	$3-3$	1-1	$1+2-1+2$	6
S 4146	0^{7}	19-19-17-17	173	$77+$	7 -7	10-10	1 -1	$3-3$	$1-1$	$1+2-1+2$	6
S 4147	\%	19-19-17-17	169	83 c	7-7	10-10	1-1	2 -3	1-1	$1+2-\quad 1+2$	6
C2801	¢	19-19-17	163	$80+$	8-8	10-10	1-1	3-3	$1-1$	$1+2-1+2$	7
C2802	\%	19-19-17	164	85 c	7 -7	10-10	1-1	3-3	1 -1	- $-1+2+2$	8
C2803	\%	19-19-17	160	85 c	7-7	10-10	1-1	3-3	1 -1	$1+2+2-1+3+2$	8
C2804	\%	19-19-17	165	$51+$	7-7	10-10	1-1	3-3	$1-1$	$1+2+2-1+2+2$	8
C2805	아	19-19-17	162	85 c	7 -7	10-10	1-1	2 -3	1-1	$1+2-1+2$	8
39554	0^{7}	19-19-17-17	172	85 c	7-7	10-10	1-1	$3-4$	1 -1	$1+2-1+2$	9
13633	\%	19-19-17	164	$37+$	7 -7	10-10	${ }^{1}-1$	3-3	${ }^{1}-1$	$1+2+3-1+2+2$	10
13634	+	X-19-17	165	75 c	7-7	X-X	$\mathrm{X}-\mathrm{X}$	X-X	X-X	$1+2+2-1+2+2$	10
	\%	19-19-17-17	164	76 c	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	
S1800	\%	19-19-17-17	167	81 c	7-7	10-10	$1-1$	3-4	1-1	$1+2-1+2$	112
C4039	아	19-19-17	163	$64+$	7-7	10-10	1 -1	3-3	1 -1	$1+2+2-1+3+3$	12
C6137	\bigcirc	19-19-17	162	$37+$	$7-7$	9-10	1 -1	4-3	1-1	$1+2+3-1+2+2$ $1+3+2-1+2+2$	12
C2447	0^{\prime}	19-19-17	172	93 c	7 -7	10-10	1 -1	3-4	1 -1	$1+3+2-1+2+2$	14
Field 4	\%	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17-17\end{aligned}\right.$	166 156	$83+$	7 7-7	$10-10$ $9-9$	$1-1$	$3-3$ $3-3$	$1-1$	$1+2 \cdots-1+2$ $1+2-1+2$	14
S1210	${ }^{\text {O }}$	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17-17\end{aligned}\right.$	156 170	80 c 97 c	7-7	10-10	$1-1$	3 -3	$1-1$	$1+2-1+2$ $1+2-1+2$	14
S1791	${ }^{\text {or }}$	19-19-17-17	172	67 +	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	14
S1792	\%	19-19-17-17	158	81 c	7-7	10-10	1-1	4-3	1-1	$1+2-1+2$	14
S1807	${ }^{4}$	19-19-17-17	170	89 c	7 -7	10-10	1-1	3-3	1 -1	$1+2-1+2$	14
S4021	${ }^{7}$	19-19-17-17	167	87 c	7-7	10-10	1-1	4-4	1-1	$1+2-1+2$	14
S4136	\%	19-19-17-17	165	$42+$	8 -8	10-10	1-1	3-3	1-1	$1+2-1+3$	14
S4137	\%	19-19-17-17\|	160	79c	7 -7	10-10	1 -1	3-3	1-1	$1+2-1+2$	14
S4224	\%	19-19-17-17	165	82 c	7 -8	10-10	1-1	3-4	1-1	$1+2-1+2$	14
S5262	\%	19-19-17-17	161	81 c	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	14
S5263	σ^{7}	19-19-17-17	169	93 c	7-7	10-10	1-1	4-4	1 -1	$1+2-1+2$	14
SR20	\%	19-19-17-17	161	86 c	$7-7$	10-10	1-1	4-2	1 -1	$1+2-1+2$	15
S1147	0^{7}	19-19-17-17	169	89 c	$7-7$	10-10	1-1	3-3	1-1	$1+2-1+2$	15
S1188	\%	19-19-17-17	163	85 c	7-7	10-10	1-1	3-3	1 -1	$1+2-1+2$	15
S1189	\%	19-19-17-17	159	$76+$	7 -7	10-10	1-1	$3-3$	1 -1	$1+2-1+2$	15
S1190	\%	19-19-17-17	167	$47+$	7 -7	10-10	1-1	3-3	1-1	$1+3-1+3$	15
S1192	\%	19-21-19-17	161	87 c	8 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	15
S1193	0^{7}	19-19-17-17	168	89 c	$7-7$	9 -9	1-1	$3-3$	1-1	$1+2-1+2$ $1+2-1+2$	15
S1194 S1195	${ }^{0} 7$	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17-17\end{aligned}\right.$	167 166	78 94 48	$7-7$ $7-7$	$8-9$ $10-10$	1-1	$3-3$ $3-3$	1-1	$1+2-1+2$ $1+3-1+2$	15
S1195	${ }^{7}$	19-19-17-17	166	94 c 94 c	$7-7$ $7-7$	$10-10$ $10-10$	$1-1$	$3-3$ $4-4$	$1-1$	$1+3-1+2$ $1+2=1+2$	15
S6379	0^{7}	19-19-17-15	163	88 c	8-8	10-10	1-1	3-3	1 -1	$1+1-1+2$	15
S6381	${ }^{7}$	19-19-17-15	167	87 c	7-7	10-10	1-1	$3-3$	1-1	$1+2-1+2$	15
S6382	$\stackrel{+}{0}$	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17-17\end{aligned}\right.$	162	$68+$	$7-7$ $7-7$	$10-10$ $10-10$	1-1	$3-3$ $3-3$	1-1	$1+2-1+2$ $1+2-1+2$	15
S1653 38944	앙	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17\end{aligned}\right.$	165 168	82 c 88 c	$7-7$ $8-7$	$10-10$ $9-10$	$1-1$	3-3	$1-1$	$1+2-1+2$ $1+2+2-1+2+2$	15
39196	O^{7}	19-19-17	169	90 c	7 -7	9-10	1-1	4-3	1-1	$1+2+2-1+2+2$	17
39197	0^{7}	19-19-17	169	93 c	7-7	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	17

Scale counts in Thamnophis sirtalis infernalis-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
13755	\%	19-19-17	166	$39+$	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	17
SR63	0^{7}	19-19-17-17	169	92c	$8-7$	10-10	1-1	4-4	1-1	$1+2-1+2$	17
S5162	$\%$	19-19-17-17	160	76 c	7 -7	10-9	1-1	3-3	1-1	$1+2-1+2$	17
S5162 (a)	.	19-19-17	160	80 c	7-7	9-10	1-1	3-3	1-1	$1+2-1+2$	17
S5162 (b)	.	19-19-17	157	77 c	$8-7$	10-10	1-1	$3-3$	1-1	$1+2-1+2$	17
S5162 (c)	.	19-19-17	160	76 c	$7-8$	10-10	$1-1$	3-3	$1-1$	$1+2-1+2$	17
S5162 (d)	.	19-19-17	159	80 c	7 -7	9-10	1 -1	3-3	1-1	$1+2-1+2$	17
S5162 (e)	. \cdot	19-19-17	161	80 c	7 -7	10-10	$1-1$	3-3	$1-1$	$1+2-1+2$	17
S5162 (f)		19-19-17	151	79c	7 -7	10-10	$1-1$	3-3	1-1	$1+2-1+2$	17
S5162 (g)	0^{7}	19-19-17	164	88 c	7 -7	10-10	1 -1	$3-3$	1-1	$1+2-1+2$	17
S5162 (h)	${ }^{0}$	19-19-17	167	91 c	7 -7	$10-10$	1-1	3-3	1 -1	$1+2-1+2$	17
S5162 (i)	${ }^{7}$	19-19-17	161	85 c	7 -7	$10-9$	$1-2$	3-3	1-1	$1+2-1+2$	17
S5162 (j)	σ^{7}	19-19-17	163	86 c	7 -7	10-10	$1-1$	$3-3$	1-1	$1+3-1+2$	17
S5162 (k)	.	19-19-17	160	77 c	7 -7	10-10	$1-1$	$3-3$	1-1	$1+2-1+2$	17
S5162 (l)		19-19-17	161	79c	7 -7	10-10	$1-1$	3-3	1 -1	$1+2-1+2$	17
S5162(m)	0^{7}	19-19-17	165	90 c	$9-9$	10-10	1-1	3-3	1-1	$1+2-1+2$	17
13762	\%	19-19-17	164	88 c	7 -7	10-10	1-1	3-3	1-1	$1+1-1+1$	18
13763	\%	19-19-17	162	84 c	$7-7$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	18
13754	0^{7}	19-19-17	173	94 c	7-7	10-10	1-1	4-3	1-1	$1+2+2-1+2+2$	19
20963	\%	19-19-17	162	$68+$	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	19
27308	0^{7}	19-19-17	171	82c	$7-7$	10-10	1-1	3-4	1-1	$1+2+2-1+2+2$	19
S5192		19-19-17-17	165	$4+$	7-7	10-10	1 -1	4-4	1-1	$1+3-1+2$	20
27474	0^{7}	19-19-17	174	$75+$	7 -7	10-10	1-1	3-3	1 -1	$1+2+2-1+2$	21
27475	\%	19-19-17	167	81 c	7 -7	10-10	1 -1	3-3	1-1	$1+2+2-1+2+2$	21
C27	0^{7}	19-19-17	172	82 c	7 -7	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	22
C57	\%	19-19-17	163		8-8	10-10	1-1	$3-3$	1 -1	$1+2-1+2$	22
C58	0^{7}	19-19-17	171	85 c	$7-7$	10-10	1 -1	$3-3$	1-1	$1+2-1+2$	22
C763	8	19-19-17	167	78 c	$8-8$	10-10	1-1	3-3	1-1	$1+2-1+2$	23
C764	0^{7}	19-19-17	174	96 c	$7-7$	10-10	$1-1$	$3-4$	1-1	$2+2-2+2$	23
40033	\%	19-19-17-17	174	85 c	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	24
C5429	\%	19-19-17	168	$33+$	7-8	10-10	1-1	4-4	1-1	$1+2+2-1+2+2$	25
C5430	0^{7}	19-19-17	167	87 c	7 -7	10-11	1-1	4-3	1-1	$1+2+1-1+2+1$	25
C2148	0^{7}	19-19-17	171	91 c	8-7	10-10	1 -1	$3-2$	1-1	$1+2+2-1+2+2$	26
C2150	\%	19-19-17	163	78 c	$8-7$	10-10	1-1	$4-3$	$1-1$	$1+2+2-1+2+2$	26
C2151	0^{7}	19-19-17	175 167	94 c $39+$	7 -7	$10-10$ $9-10$	$2-2$	$3-3$ $4-3$	$1-1$	$\underline{1+2+2-1+2+2}$	26
C2154 C 2155	$\stackrel{8}{8}$	$19-19-17$ $19-19-17$	167	$39+$ $41+$	$7-7$ $7-7$	$9-10$ $10-10$	1 1-1	$4-3$ $3-3$	$1-1$	$\overline{-1+2+2-1+2+2}$	26
C2156	${ }^{\circ}$	19-19-17	167	89 c	7 -8	10-10	1 -1	3-3	1-1	$1+2+2-1+2+2$	26
C2157	${ }^{\circ}$	19-19-17	171	87 c	7 -7	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	26
C2159	0^{7}	19-19-17	168	$48+$	7-7	10-10	1-1	3-3	1-1	$1+2+3-1+2+2$	26
C2160	\%	19-19-17	161	83 c	8-7	9-10	1-1	4-3	1-1	$1+2-1+2$	26
C2161	\%	19-19-17	162	$62+$	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	26
C2162	0^{7}	19-19-17	168	$16+$	$7-7$	8-9	$1-1$	3-3	1-1	$1+1+2-1+2+2$	27
C2174	\%	19-19-17	162	$82+$	$8-7$	10-10	1-1	4-3	1 -1	$1+2+2-1+2+2$	28
C2175	\%	19-19-17	160	81c	7-7	10-10	1 -1	3-3	1 -1	$1+2+2-1+2-+2$	28
C2176	0^{7}	19-19-17	162	89 c	7-7	10-10	1-1	$4-3$ $3-3$	1-1	$1+2+2-1+2+2$	28
C2177	\%	19-19-17	169	84 c		11-10		$3-3$		$1+2-1+2$	28
C2178	\%	19-19-17	168	90 c	7 -7	10-10	$1-1$	3-4	1-1	$1+2+2-1+2+2$	28
C2182	\%	19-19-17	170	81 c	7 -7	10-10	1 -1	$3-3$	1 -1	$1+2+2-1+2+2$	28
C2180	\%	19--19-17	163	77c	$7-7$	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	29
C2181	\%	19-19-17	165		7 -7	10-10	1-1	3-4	1 -1	$1+2+2-1+2+2$	29 30
39646	8	$19-19-17-17$	162	83 c	$7-7$	10-10	1 -1	3-3	1 -1	$1+2-1+2$	30
C5894	\%	$19-19-17-17$	164	$71+$	7 -7	10-10	1-1	3-3	1-1	$1+2-1+2$	31
C5896	\bigcirc	19-19-17-17	161	88 c	7 -7	10-10	1-1	4-3	1-1	$1+2-1+2$	32
C5895	8 ?	19-19-17-17	177	92 c	7 -7	10-10	1-1	$3-3$ $3-3$	1 -1	$1+2-1+2$	33
C5905	9	19-19-17-17	164	86 c	8 -8	10-10	1-1	$3-3$	1 -1	$1+2-1+2$	33
C5900	\%	$19-19-17$ $19-19-17-17$	157	81c	$7-7$ $\times-7$	10-10	1 -1	$3-3$ $\mathrm{X}-3$	$1-1$	$2+2-1+2$	34 34
C 5901 C 5903		$19-19-17-17$ $19-19-17-17$	172 162	75 c 81 c	$\mathrm{X}-7$ $7-7$	X-X $10-10$	1 -1	3 $3-3$ 3	$1-1$	$\cdots-1+2$	34 34
C 5903 C 5959	$\stackrel{+}{+}$	$19-19-17-17$ $19-19-17-17$	162 164	81 c 89 c	7 7-7	$10-10$ $10-9$	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$ $1+2-1+2$	5
20388	\%	19-19-17	167	79	7-7	10-10				$1+1+2-1+2+2$	35
20389	\%	19-19-17	166	$79+$	8-7	10-9				$1+2+2-1+2+2$	35

The following localities are represented each by one specimen. The material being so limited we are unable to state definitely to which subspecies of sirtalis these specimens should be referred.

1. Willow Lake, Tehama Co., California.
2. Susanville, Lassen Co., Cal.
3. Fallen Leaf Lake, El Dorado Co., Cal.
4. Silver River, Harney Co.. Oregon.
5. Vicinity Nixon, Washoe Co., Nevada.

Scale counts of Thamnophis sirtalis, subspecies?

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
39643	\%	19-19-17	161	$34+$	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	1
S6543	\%	19-19-17	160	77c	7-7	10-10	1-1	4-3	1-1	$1+2-1+2$	2
36323	\%	19-19-17	162	72c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	3
S6507	${ }^{\circ}$	19-19-17	169	79 c	7 7-7	9--9	$1-1$	$2-3$	1 -1	$1+2-1+2$	4
S	\%	19-19-17		$50+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	5

Remarks.-This subspecies differs from both T. s. parietalis and T. s. concinmus in having a greater number of gastrosteges and urosteges. This is clearly shown in the following table of average counts :

Gastrosteges	¢	¢
parietalis	. 165.4	161.1
concinnus	. 164.3	156.4
infernalis	168.7	163.7

Urosteges
parietalis 85.276.
concinnus 84.276 .8
infernalis 89.8 82.8

It probably will prove to be impossible to draw any very definite limits to the areas occupied by this form and by $T . s$. concinnus. This must be so, for one gradually changes into the other. The area of intergradation is a broad one, individual variation is great, and opinions may easily differ as to geographical limits. Our own views are expressed in the lists of localities given under each subspecies. These indicate that to
T. s. concinnus are referred snakes from Del Norte, Siskiyou. Shasta, Humboldt, Mendocino, Sonoma, Napa, and Marin counties, while those from elsewhere in Califormia are regarded as T. s. infernalis.

There is much variation in color. Certain types of coloration seem to be more frequent in certain localities than elsewhere. Thus, the majority of the snakes from the San Joaquin and Sacramento valleys and the Klamath region differ in appearance from those from Santa Clara County and the southern coast. Much larger series might perhaps throw light upon these conditions, which now are obscure.

Some specimens have bright red heads. Others, perhaps of the same lot, have no red, or heads that are partially red. The red-headed snakes are of both sexes, various ages, and all sorts of localities.

One specimen had eaten a full-grown toad.

Thamnophis eques (Reuss)

Diagnosis.-Squamation similar to that of the other members of the sirtalis group but supralabials usually eight ; prominent dark nuchal blotches.

Type Locality.-Mexico.
Range.-This snake occurs in the United States in Arizona, New Mexico and western Texas. Thence it ranges south through Mexico to Guatemala. In Arizona it has been found in the plateau region and about the foothills of various mountain groups. Ruthven has recorded it from Fort Apache, Fort Huachuca, White River Canyon, Sabino Canyon, and Fort Whipple, Arizona.

We have examined specimens from the following localities:

1. Cave Creek, Maricopa Co., Arizona.
2. Oak Creek, Coconino Co., Ariz.
3. Sabino Canyon, Santa Catalina Mountains, Pima Co., Ariz.
4. Steam pump, foothills of the Catalina Mountains, 18 miles. north of Tucson, Pima Co., Ariz.

Material.-Twenty-one specimens from these four localities.
Variation.-The loreals are $1-1$ in all. The preoculars are $1-1$ in all but one which has $1-2$. The postoculars are 3-3 in all but three which have 3-4. The temporals are $1+2-$ $1+2$ in fourteen, $1+2-1+3$ in three, $1+3-1+3$ in three, and $2+3-2+3$ in one. The supralabials are $8-8$ in twenty, and $8-9$ in one. The infralabials are $10-10$ in seventeen, $11-11$ in two, $10-11 \mathrm{in}$ one, and $9-10$ in one. The scalerows are 19-19-17 in all but one which has $21-19-17$. The gastrosteges vary in number from 164 to 175 , males having from 166 to 175 , females from 164 to 171 ; the average in thirteen males is 170.6 , in seven females, 168 . The urosteges vary from 77 to 97 , males having from 85 to 97 , females from 77 to 88 ; the average in twelve males is 91.7 , in six females, 83.5.

The series is too small to show the real limits of variation. The scale-counts are given in full in the following table.

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Local- ity
17543	9	19-17	164	82	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	1
17544	0^{7}	19-17	172	47 +	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	1
17545	0^{7}	19-17	172	93	8 -9	$11-11$	1-1	$3-3$	1-1	$1+3-1+3$	1
34169	\%	19-17	167	77	8-8	10-10	1-1	3-4	1-1	$1+2-1+2$	3
34170	0	19-17	167	85	8-8	10-10	1-2	3-3	1-1	$1+3-1+3$	3
34277	0^{7}	19-17	167	97	8 -8	$10-10$	1 -1	3-3	1-1	$1+2-1+3$	4
34278	0^{7}	19-17	174	93	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	4
34279	\%	19-17	171	80	8 -8	10-10	1 -1	3-3	1-1	$2+3-2+3$	4
34280	0°	19-17	173	87	8 -8	10-10	1 -1	3-3	1-1	$1+2-1+2$	4
34281	\%	19-17	166	$55+$	8-9	10-10	1-1	3-3	1-1	$1+3-1+3$	4
34282	0^{7}	19-17	166	$48+$	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	4
35256	0^{7}	19-17		92	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	2
35257	${ }^{7}$	19-17	170	90	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	2
35258	${ }^{7}$	21-19-17	166	88	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	2
35259	${ }^{7}$	19-17	173	96	8-8	10-10	$1-1$	$2-2$	1 -1	$1+2-1+2$	2
35260	$0^{\prime \prime}$	19-17	175	92	8-8	9-10	1-1	3-4	1-1	$1+2-1+2$	2
35261	\%	19-17	168	88	8 -8	10-11	1-1	3-3	1-1	$1+2-1+2$	2
35262	\%	19-17	170	88	8 -8	10-10	1-1	3-4	1 -1	$1+2-1+2$	2
35263	${ }^{\circ}$	19-17	172	97	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	2
35264	${ }^{7}$	19-17	171	91	8 -8	10-10	1 -1	3-3	1-1	$1+2-1+2$	2
35265	\%	19-17	170	86	8-8	11-11	1-1	3-3	1-1	$1+2-1+3$	2

Remarks.-Specimens from Mexico and Central America seem to differ from those from Arizona and New Mexico in the frequent reduction in the number of supralabials to seven. Since our material is all from Arizona we are unable to form an opinion as to whether the snakes from these distant localities are really identical in other respects.

THE ELEGANS GROUP

The second great group of our garter-snakes includes all those snakes which show an apparent relationship with the form which Baird and Girard named Eutainia clegans. The satisfactory classification of the snakes which group themselves about this central form long has been regarded as one of the most difficult problems in North American herpetology. Only the large material at hand has induced us to study this problem again. The difficulties are such that we shall feel that the very great labor involved has been justified if even a little better understanding of the facts result from this study.

As a result of former study of this group five species and subspecies were recognized, as follows:-

1. T. leptocephala (or ordinoides), a dwarf form from the coast region of Washington and Oregon.
2. T. elcgans, a striped form, from the coast and Sierra Nevada of California.
3. T. vagrans, a spotted form, from both sides of the Sierra Nevada and a vast country farther east.
4. T. vagrans biscutatus, a subspecies with an increased number of preoculars, from the Klamath Lake region and the Pacific Northwest.
5. T. hammondii, a form without dorsal light line, from the San Diegan Fauna and the San Joaquin Valley.

Brown, in 1903, adopted these views and recognized these same forms, but reduced clegans and vagrans to subspecific rank, and regarded leptocephala as a subspecies of sirtalis which ranged along the coast south to San Francisco.

Ruthven, in 1908, divided the snakes which, in "The Reptiles of the Pacific Coast," had been called T. elegans, into two groups, those from the coast and those from the Sierra Nevada. Following Brown, he united the former with leptocephala under the name T. ordinoides. The snakes from the Sierra Nevada, together with the forms T. vagrans and T. vagrans biscutatus, were merged by him in a single subspecies under the name T. ordinoides elegans. T. hammondii was recognized by Ruthven.

General Discussion

Before proceeding to set forth in detail the results of the present investigation, it may be well to state that the views maintained in 1897 have been, in the main, confirmed. The five forms then recognized, are still recognized, with the same limits, except that the forms then called T. clegans and T. hammondii are each divided into two, and all of the forms are reduced to subspecific rank.

Each of these subspecies occupies its own particular geographic area, where it alone represents the group; but the area occupied by each meets or overlaps that of one or more of the other members of the group. Thus, T. ordinoides vagrans is the only garter-snake of the clegans type throughout a vast area, where it adheres to its particular color characters with remarkable constancy, but in various places in the far west its range meets or overlaps the ranges of other forms and at these points specimens are found in which the instability of these same characters is quite as notable. Such specimens may defy definite subspecific identification. They are to be regarded as showing intergradation between the subspecies. All of the subspecies recognized are linked one to another by such intergradation.

Some conclusions reached from the present study are :-

1. T. ordinoides ordinoides is the most distinct of these subspecies.
2. The range of T. ordinoides ordinoides is the coast region of British Columbia, Washington and Oregon. In California it is limited to the extreme northwestern corner of the state. We are unable to follow Brown in referring to T. ordinoides ordinoides the snakes of the coastal strip of California ; or Ruthven, in extending the range of this form south to Tehachapi and east to the Sierra Nevada.
3. The garter-snakes of the immediate coast region of California represent a distinct race or subspecies.
4. This race may be called T. ordinoides atratus.
5. Intergradation between T. ordinoides ordinoides and T. ordinoides atratus occurs in Del Norte and Humboldt counties.
6. T. ordinoides atratus is more closely related to T. ordinoides elegans than to the other subspecies.
7. T. ordinoides clegans is confined to the Sierra Nevada and the mountains of southern California, excludling the lower levels.
8. T. ordinoides clegans in the mountains of southern California remains true to type. No specimens showing signs of intergradation have been taken.
9. In the Sierra Nevada, however, intergradation occurs and one may be in doubt whether to refer a particular specimen to clegans or to ragrans or couchii.
10. The Sierra Nevada snakes of pure elegans type seem not to occur at the lower altitudes, but material is insufficient for proof.
11. The snakes from the lower Sierra Nevada and the San Joaquin Valley, which have been referred sometimes to vagrans, sometimes to hammondii, are neither.
12. They combine characters of both vagrans and hammondii in varying proportion.
13. They may best be regarded as a separate, though intermediate, subspecies.
14. This may be called T. ordinoides couchii.
15. The range or T. o. couchii extends from Shasta County south through the San Joaquin Valley, and, east of the Sierra Nevada, from Owen's Lake to Lake Tahoe, and Pyramid Lake.
16. Snakes of this type occur also in the warmer parts of Monterey County.
17. Thamnophis ordinoides hammondii, of pure type, ranges north to the Mohave River and to southern San Luis Obispo County.
18. T. o. hammondii may have a nuchal spot, put has no dorsal line, not even a rudimentary one.
19. In the mountains of southern California elegans and hammondii may be found together: but only hammondii has been taken at lower altitudes.
20. No intergradation between hammondii and clegans has been found in southern California.
21. Farther north such intergradation occurs through couchii.
22. The snakes of the Klamath and Modoc region usually have more than one preocular.
23. They slould be recognized as a separate subspecies, Thamnophis ordinoides biscutatus.
24. In coloration biscutatus is intermediate between clegans and vagrans, but more like vagrans.
25. Snakes of the vagrans type reach the coast, or nearly there, in British Columbia and northern Washington and in southern Oregon and Del Norte County, California.
26. Since a majority of these snakes have two preoculars, it seems best to call these also biscutatus, as was done in "The Reptiles of the Pacific Coast."
27. Two snakes from the San Pedro Martir Mountains, Lower California, Mexico, which were formerly recorded as hammondii (Proc. Cal. Acad. Sci., Ser. 2, Vol. V. p. 1007) are typical vagrans.

We are thus led to the recognition of eight members of the elegans group of garter-snakes, as follows:-

1. Thammophis ordinoides ordinoides
2. Thamnophis ordinoides atratus
3. Thamnophis ordinoides elegans
4. Thamnophis ordinoides biscutatus
5. Thamnophis ordinoides vagrans
6. Thamnophis ordinoides couchii.
7. Thamnophis ordinoides hammondii
8. Thamnophis marcianus

The curves of scale-counts shown in Figures 2 to 6 will serve to show the differences and relationships of these subspecies as regards these characters. The curves show the percentage of specimens having each number of scales. Each subspecies is represented by a separate line. In all these charts the
(1) line of crosses represents, ordinoides
(2) continuous line, atratus
(3) dotted line, biscutatus (Klamath Lake)
(4) broken line with longest
segments, elegans (Sierra Nevada)
(5) broken line with shortest segments, elegans (San Bernardino Mts.)
(6) broken line with intermediate segments, vagrans (Utah, Idaho, Nevada)
(7) line of 00000000000000 , hammondii
(8) line of vvvvvvvvvvvvvvv, couchii

These charts represent the counts in about 262 specinens of T. o. ordinoides, 387 of T. o. atratus, 37 T. o. elegans from the Sierra Nevada and 41 from the San Bernardino mountains, 108 T. o. vagrans, 235 T. o. biscutatus, 75 T. o. hammondii, and $40 T$. o. couchii. The numbers vary slightly for the different charts. The chart of gastrostege counts, however, is based upon smaller numbers, since it includes only male specimens.

Figure 2

Figure 2 shows the counts of the supralabial plates. It brings out very clearly the distinctness of T. ordinoides ordinoides from all the other subspecies. The percentages shown for the various subspecies are:
T. ordinoides $0.4,2,4,86,6,2$.
T. o. atratus 8, 7, 85, 0.3, 0.3.
T. o. elegans (Sierra Nevada) 86, 11, 3.
T. o. elegans (San Bernardino Mts.) 3, 97.
T. o. vagrans $3,96,1$.
T. o. biscutatus 2, 5, 92, 1 .
T. o. hammondii 99, 1.
T. o. couchii 100.

Figure 3

Figure 3 shows the counts of the infralabial plates. It again emphasizes the distinctness of T. o. ordinoides, and also shows the strong tendency in $T . o$. couchii to increase to 11 the number of these plates. The percentages shown for the various subspecies are:
T. o. ordinoides $1,3,5,55,15,19,2$.
T. o. atratus $1,2,10,14,73,1$.
T. o. elegans (Sierra Nevada) 5, 17, 74, 0.4.
T. o. elegans (San Bernardino Mts.) 10, 90.
T. o. vagrans $3,6,84,5,2$.
T. o. biscutatus 3, 5, 91, 1 .
T. o. hammondii 3, 4, 92, 1.
T. o. couchii 7.5, 56, 7.5, 25.

Figure 4

Figure 4 represents the number of preocular plates. It shows T. o. biscutatus is entitled to recognition, and that T. o. hammondii also has a strong tendency toward an increase in the number of these plates. The other subspecies all agree in having but one preocular as the normal condition. The percentages shown for the various subspecies are:-

> T. o. ordinoides $87,8,5$.
> T. o. atratus $94,2,4,0.3$.
> T. o. elegans (Sierra Nevada) $97,0.3$.
> T. o. elegans (San Bernardino Mts.) $34,12,5$.
> T. o. vagrans $77,11,11,1$.
> T. o. biscutatus $23,11,66,0.4$.
> T. o. hammondii $36,18,42,1,3$.
> T. o. couchii $85,2.5,12.5$.

Figure 5

Figure 5 represents the greatest number of scale-rows. It shows that all of the subspecies except T. o. ordinoides and T. o. atratus agree in having normally 21 rows of scales. It indicates the right of T. o. atratus to recognition as a subspecies distinct from T. o. ordinoides on the one hand and from all of the other subspecies on the other. The percentages shown for the various subspecies are:-
T. o. ordinoides 76, 24.
T. o. atratus 79, 21.
T. o. elegans (Sierra Nevada) 13, 87.
T. o. elegans (San Bernardino Mts.) 5, 95.
T. o. vagrans 2, 98.
T. o. biscutatus 1, 95, 4.
T. o. hammondii 1, 99.
T. o. couchii 5, 90, 5.

Figure 6

Figure 6 represents the variation in the number of gastrosteges, in males only. It shows that T. o. atratus differs from both T. o. ordinoides and T. o. elegans. All of the other races agree closely with T. o. elegans in the number of their gastrosteges. T. o. ordinoides is very distinct from all except the intermediate T. o. atratus.

Thamnophis ordinoides ordinoides, Puget Garter-Snake:-Photograph from lising specimen collected at Portland, Oregon, in October, 1916.

Thamnophis ordinoides ordinoides (Baird \& Girard)

Puget Garter-Snake.

Diagnosis.-Normally with fewer than eight supralabials and fewer than ten infralabials. Scales usually in seventeen, sometimes in nineteen, rows. Gastrosteges fewer than in the more southern races. Coloration very variable, striped, spotted or unicolor, often with some red. Preoculars usually single. Size small.

Type Locality.-Puget Sound.
Synonyms.-Eutcenia leptocephala Baird \& Girard, 1853; type locality, Puget Sound. Eutcnia cooperi Kennicott, 1860; type localities Cathapoot'l and Willopah valleys. Thamnophis rubristriata Meek, 1899; type locality Olympic Mountains, Washington. Thamnophis leptocephalus olympia Meek, 1899; type locality Olympic Mountains, Washington.

Range.-This garter-snake seems nowhere to range far from the coast. It occurs in southwestern British Columbia, on the mainland and on Vancouver Island, and ranges thence south across Washington and Oregon to the northwestern corner of California, where it seems to be confined to Del Norte County.

We have examined specimens from the following locali-ties:-

1. Lillooet River Valley, British Columbia.
2. Friendly Cove, Nootka Sound, B. C.
3. Golden Eagle Mine, Mt. Saunders, B. C.
4. Tahsis Canal, Nootka Sound, B. C.
5. Alberni Valley, Vancouver Island, B. C.
6. San Juan Islands, Washington.
7. New Whatcom, Wash.
8. Port Orchard, Kitsap Co., Wash.
9. Darrington, Snohomish Co., Wash.
10. Montesano, Chehalis Co., Wash.
11. Melbourne, Chehalis Co., Wash.
12. Pierce Co., Wash.
13. Lebam, Pacific Co., Wash.
14. Trapp Creek, Pacific Co., Wash.
15. Astoria, Clatsop Co., Oregon.
16. Gearheart, Clatsop Co., Ore.
17. Portland, Multnomah Co., Ore.
18. Garibaldi, Tillamook Co., Ore.
19. Trask River, Tillamook Co., Ore.
20. Tillamook, Tillamook Co., Ore.
21. Nestucea River Road, Tillamook Co., Ore.
22. Road to Nestucea between Grandronde and Dolph, Yamhill Co., Ore.
23. Siletz, Lincoln Co., Ore.
24. Toledo, Lincoln Co., Ore.
25. Junction Little Elk and Yaquina River, Benton Co., Ore.
26. Between Chitwood and Siletz River, Benton Co., Ore.
27. Road between Pioneer and Siletz River, Benton Co., Ore.
28. Philomath, Benton Co., Ore.
29. Alsea River, near Alsea, Benton Co., Ore.
30. Junction Lake and Deadwood Creek, Lane Co., Ore.
31. Junction of Siuslaw River and Lake Creek, Lane Co., Ore.
32. Elmira, Lane Co., Ore.
33. Marshfield, Coos Co., Ore.
34. South Fork Coos River, Coos Co., Ore.
35. Sumner, Coos Co., Ore.
36. Coquille, Coos Co., Ore.
37. South Fork Coquille River, 20 miles above Myrtle Point, Coos Co., Ore.
38. Myrtle Point, Coos Co., Ore.
39. Camas Mountains, Douglas Co., Ore.
40. Sixes River, Curry Co., Ore.
41. Port Orford, Curry Co., Ore.
42. Elk Creek, Curry Co., Ore.
43. Flores Creek, Curry Co., Ore.
44. Between Flores Creek and Rogue River, Curry Co., Ore.
45. Vicinity mouth of Rogue River, Curry Co., Ore.
46. Corbin, Curry Co., Ore.
47. Goldbeach, Curry Co., Ore.
48. Harbor, Curry Co., Ore.
49. Smith River, Del Norte Co., California.
50. Gasquet, Del Norte Co., Cal.
51. Crescent City, Del Norte Co., Cal.
52. Requa, Del Norte Co., Cal.
53. Union Bay, Bayne Sound, B. C.
54. Mt. Rainier, Pierce Co., Wash.
55. Drain, Douglas Co., Ore.
56. Cow Creek, Douglas Co., Ore.

Material.-About three hundred and twenty-five snakes of this subspecies have been examined by us in the preparation of this paper.

Variation.-Three specimens have no loreal plates; one has a loreal on one side only; the others have the normal loreal $1-1$. The preoculars are $1-1$ in two hundred and seventynine, or $86 \% ; 1-2$ in twenty-six, or 8%; and $2-2$ in twenty, or 6%. The postoculars are 3-3 in two hundred and eightyfour, or $87 \% ; 2-3$ in twenty-four, or $7 \% ; 2-2$ in sixteen, or 5%; and $1-2$ in one. The temporals are $1+2-1+2$ in two hundred and eighty-nine, or $89 \% ; 1+2-1+1$ in eighteen, or $6 \% ; 1+2-1+3$ in eight, or $2 \% ; 1+1-1+1$ in four, or 1%; and $3+3-3+3$ in three, or 1%. The supralabials are $7-7$ in two hundred and eighty-three, or $85 \% ; 7-8$ in twenty, or 6%; $7-6$ in nine, or $3 \% ; 8-8$ in five, or 2%; 6-6 in four, or 1%; $5-5$ in one, and $8-6$ in one. The infralabials are $8-8$ in one hundred and seventy-nine, or 55%; 8-9 in fifty-eight, or 18%; 8-9 in fifty-four, or 17%; 7-8 in sixteen, or $5 \% ; 7-7$ in nine, or $3 \% ; 9-10$ in six, or 2%; and $6-7$ in two. The scale-rows are $17-17-15$ or $17-15-15$ in two hundred and thirty-six, or 72%; the other 28% all have 19 rows, but the formula may be $17-19-17-15,17-19-17,19-19-17$, $19-19-15,17-19-17$, or $17-18-19-17$. The gastrosteges vary in number from 135 to 162 , males having from 138 to 162 , females from 135 to 154 ; the average in one hundred and eighteen males is 149.2 , in one hundred and fifty-eight females, 144.8. The urosteges vary from 50 to 81 , males having from 56 to 81 , females from 50 to 72 ; the average in ninety-six males is 70.2 , in one hundred and twenty-eight females, 60.9.

This variation is shown in full in the following table of scale-counts.

Scale counts in Thamnophis ordinoides ordinoides

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
S5170	9	$17-19-17-15$	148	59c	$7-7$	$9-8$	1-1	$3-2$	1-1	$1+3-1+3$	1
C2466	9	$17-17-15$	142	58c	$7-8$	$9-10$	$2-1$	$3-3$	1-1	$1+2-1+2$	2
C2468	\%	$17-17-15$	141	58c	7-7	8-9	1-1	3-3	1-1	$1+2-1+3$	3
C2469	\bigcirc	$17-17-15$	145	63 c	$7-7$	$9-9$	1-1	$2-2$	1-1	$1+2+2-1+2+1$	4
C2470	\%	$17-17-15$	145	62 c	7-7	9-9	$2-2$	3-3	1-1	$1+2-1+3$	4
C2296	\%	17-19-15	143	56 c	$7-7$	8-7	1-1	3-3	1-1	$1+2-1+2$	5
C2299	\%	$17-19-15$	144	$49+$	$7-8$	$9-10$	$2-2$	3-3	1-1	$1+2-1+2$	5
C2308	9	$17-17-15$	143	58c	6-7	$7-8$	1-1	3-3	1-1	$1+2-1+2$	5
C2309	$\%$	$17-17-15$	141	61c	7-7	9-9	1-1	3-3	1-1	$1+2-1+2$	5
C2310	8	$17-17-15$	152	58 c	7-7	$9-9$	1-1	3-3	1-1	$1+2+2-1+2+2$	5
C2311	9	$17-17-15$	140	55c	$7-7$	8-9	1-1	3-3	1-1	$1+3-1+3$	5
C2312	8	$17-17-15$	146	57 c	$7-7$	8-8	$2-2$	3-3	1-1	$1+2-1+2$	5
C2313	8	$17-17-15$	147	60 c	$7-7$	8-9	$2-2$	3-3	1-1	$1+2-1+2$	5
C2467	\%	$17-17-15$	141	58 c	$7-7$	9-9	1-1	$3-3$	1-1	$1+2-1+2$	5
S6515	9	$17-19-17-15$	142	56 c	8-7	8-8	1-1	$3-3$	1-1	$1+2-1+2$	6
S4269	0^{7}	$17-17-17-15$	156	67 c	$7-7$	8-8	1-1	$3-3$	1-1	$1+2-1-2$	7
30400	${ }^{7}$	17-18-19-19-17	148	71c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	8
30508	\%	$17-17-15$	143	56 c	$7-7$	$9-9$	1-1	$3-3$	1-1	$1+2+1-1+2+1$	9
30511	8	$17-17-15$	149	$47+$	6-7	9-9	1-1	3-3	1-1	$1+2-1+2$	9
24101	8^{7}	$17-17-15$	151	68 c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	10
24102	9	$17-19-15$	147	58c	$7-7$	$7-7$	1-1	3-3	1-1	$1+2-1+2$	10
24103	8	17-19-15	150	59c	7-7	8-8	1-1	3-3	1-1	$1+2+1-1+2+2$	10
29930	0^{7}	$17-17-15$	146	66 c	7-7	$9-8$	1-1	3-3	1-1	$1+2+2-1+2+2$	11
29931	8	17-19-17-15	144	63 c	7-7	8-8	1-1	$3-3$	1-1	$1+2-1+2+2$	11
29932	0^{7}	$17-19-17-15$	149	64c	7-7	8-8	1-1	$3-3$	1-1	$1+2+2-1+2+2$	11
29933	\bigcirc	$17-17-15$	146	61c	$8-6$	8-8	1-1	$3-3$	1-1	$1+2+2-1+2+2$	11
29934	\%	17-19-17-15	148	58c	7-7	8-8	1-1	3-3	1-1	$1+2-1+1$	11
29935	\bigcirc	17 17-17-15	142	$37+$	7-7	8-8	1-1	3-3	1-1	$1+3+2-1+2+2$	11
29936	\%	17-19-17-15	143	$48+$	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	11
29937	${ }^{7}$	17-17-15	149	62 c	7-7	8-8	1-1	$3-3$	1-1	$1+2+2-1+2+2$	11
29938	0^{7}	17-17-15	145	64c	6-7	8-9	1-1	3-3	1-1	$1+2+2-1+2+2$	11
29939	\bigcirc	19-19-17	145	63c	7-7	$9-9$	1-1	3-3	1-1	$1+2-1+3$	11
29940	${ }^{8}$	17-17-15	145	$39+$	$7-7$	8-8	1-1	3-3	1-1	$1+2+1-1+1+1$	11
S5152	0^{7}	17-17-15-15	150	64 c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	12
S5153	\bigcirc	$17-17-15-15$	143	$48+$	$7-7$	$9-9$	1-1	$2-2$	1-1	$1+2-1+2$	12
29922	0^{7}	17-19-17-15	147	$62+$	$7-7$	8-8	2-1	3-3	1-1	$1+2+2-1+2+2$	13
29923	\bigcirc	17 17-17-15	149	60 c	$7-7$	8-8	1-1	3-3	1-1	$1+2+3-1+2+3$	14
29924	0^{7}	17-19-17-15	146	72 c	$7-7$	8-8	2-1	3-3	1-1	$1+2+1-1+2+1$	14
29925	0^{7}	$17-19-17-15$	146	$57+$	$7-7$	$9-8$	1-1	3-3	1-1	$1+2+2-1+2+1$	14
29926	\%	$17-19-17-15$	147	$53+$	$7-7$	9-9	1-2	$3-3$	1-1	$1+2+2-1+2+2$	14
29862	8	$17-17-15$	145	59c	$7-7$	$7-7$	1-1	$3-3$	1-1	$1+2+2-1+2+2$	15
29863	${ }^{\circ}$	$17-17-15$	149	69c	8-7	$8-8$	$1-1$	$3-3$	1-1	$1+2+1-1+2+2$	15
29864	${ }^{7}$	$17-17-15$	155	66 c	$7-7$	$7-7$	1-1	3-3	$1-1$	$1+2+2-1+2+2$	15
29865	0^{\prime}	$17-17-15$	147	62c	$7-7$	8-7	$2-2$	$3-3$	1-1	$1+2+2-1+2+2$	15
29866	\%	$17-17-15$	144	$48+$	$7-8$	$9-9$	1-1	$3-3$	1-1	$1+3+2-1+2+1$	15
29867	0^{7}	$17-17-15$	151	68 c	7-7	9-9	1-1	3-3	1-1	$1+2+2-1+2+2$	15
29868	0°	$17-17-15$	149	65 c	7-7	$7-8$	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	15
29869	\%	$17-19-15$	145	61 c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	15
29810	\bigcirc	17-17-15	147	$27+$	7-7	$7-8$	1-1	3-3	1-1	$1+2+2-1+2+2$	16
29811	${ }^{\circ}$	$17-17-15$	150	$51+$	7-7	8-8	1-1	3-3	1-1	$1+1-1+2$	16
20401	0^{7}	$17-17-15$	152	73 c	6-7	7-8	1-1	$2-2$	1-1	$1+2-1+2$	17
20402	\bigcirc	$17-17-15$	153	64 c	$7-7$	8-8	1-1	$2-2$	1-1	$1+2+2-1+2+2$	17
20403	${ }^{7}$	$17-17-15$	152	71 c	$7-8$	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	17
20404	0^{7}	$17-19-15$	149	76 c	$7-7$	8-8	$1-1$	$2-3$	1-1	$1+2+2-1+2+2$	17
20405	0^{7}	$17-17-15$	151	$67+$	$7-7$	$8-9$	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	17
20406	9	$17-19-17$	147	64 c	$7-7$	8-8	$1-1$	3-3	1-1	$1+2+2-1+2+2$	17
20407	\%	$17-17-15$	142	63 c	$7-7$	8-8	1-1	$3-2$	1-1	$1+2-1+2$	17
20408	9	$17-19-17$	152	64 c	$7-7$	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	17
20409	\%	$17-17-15$	146	$51+$	$7-7$	8-8	$1-1$	3-3	1-1	$1+2+2-1+2+2$	17
20410	${ }^{\circ}$	$17-19-15$	148	72c	7-7	8-8	1-1	3-3	$1-1$	$1+2+2-1+2+2$	17
20411	0^{7}	$17-17-15$	150	70 c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	17
29711	\%	$17-17-15$	152	63 c	$7-7$	8-8	$1-1$	3-3	1-1	$1+2+2-1+2+2$	18
29712	8	$17-17-15$	147	50 c	$7-7$	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	18
29713	8	$17-19-15$	144	57 c	$7-8$	$8-8$	$1-1$	3-3	1-1	$1+2+2-1+2+2$	18
29714	9	$17-17-15$	154	${ }_{58}^{42+}$	$7-7$ $6-6$	8-8	$1-1$	$3-3$ $3-3$	1-1	$1+2+2-1+2+2$ $1+2+2-1+2+2$	18
29742	9	$17-17-15$ $17-17-15$	151	58c	$6-6$ $7-7$	$8-8$ $9-8$	$1-1$	$3-3$ $3-3$	1-1	$1+2+2-1+2+2$ $1+2+2-1+2+2$	19
29688	0^{7}	$17-17-15$	146	62c	7-8	10-9	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	20
29689	${ }^{7}$	$17-17-15$	154	63 c	$7-7$	8-8	1-1	3-3	1-1	$1+2+2-1+1+2$	20
29690	8^{7}	$17-17-15$	152	72 c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	20
29691	\bigcirc	$17-17-15$	148	$36+$	$7-7$	8-8	$1-1$	3-3	0-0	$1+2+2-1+2+2$ $1+2+2-1+1+2$	20
29692	8	$17-17-15$	144	59 c $70+$	$7-7$	$9-8$ $8-8$	1-1	$3-3$ $3-3$	1-1	$1+2+2-1+1+2$	20
29693	0^{7}	$17-17-15$	148	$70+$	$7-7$ $6-7$	$8-8$ $8-8$	1-1	$3-3$ $3-3$	1-1	$1+2+2-1+2+2$ $1+2+2-1+2+2$	20
29694	9	$17-19-17$	148	56 c	6-7	$8-8$ $8-8$	1-1	$3-3$ $3-3$	$1-1$	$1+2+2-1+2+2$ $1+2+2-1+2+2$	20
29695	0^{7}	$17-17-15$	154	$71+$	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	20

Scale counts in Thamnophis ordinoides ordinoides-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Number \& Sex \& Scale rows \& Gastrosteges \& \[
\left\lvert\, \begin{gathered}
\text { Uro- } \\
\text { steges }
\end{gathered}\right.
\] \& Supralabials \& Infralabials \& \[
\begin{aligned}
\& \text { Pre- } \\
\& \text { oculars }
\end{aligned}
\] \& Postoculars \& Loreals \& Temporals \& \[
\begin{aligned}
\& \text { Local- } \\
\& \text { ity }
\end{aligned}
\] \\
\hline 29697 \& \(\bigcirc\) \& 17-17-15 \& 152 \& 62 c \& 7 -7 \& 8-8 \& 1-1 \& 3-3 \& 1-1 \& \(1+2+2-1+2+2\) \& 20 \\
\hline S4534 \& \(0^{4}\) \& 17-19-17-15 \& 152 \& 56 c \& 7-7 \& 9-9 \& 1 -1 \& 3-3 \& 1 -1 \& \(1+2-1+2\) \& 21 \\
\hline S5308 \& \(\mathrm{O}^{\prime}\) \& 17-17-17-15 \& 144 \& 65c \& 7-7 \& 8 -8 \& 2-2 \& \(2-2\) \& 1 -1 \& \(1+2-1+2\) \& 22 \\
\hline 29687 \& \({ }^{\circ}\) \& 17-17-15 \& 153 \& 67 c \& 7-7 \& 8 -88 \& 1 -1 \& \({ }_{3}^{2-2}\) \& 1 -1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29643 \& \({ }^{\circ}\) \& 17-17-15 \& 148 \& 62 c
58 c \& 7 7-7 \& 8-8 8 \& \({ }_{1}^{2-1}\) \& 3 \& \({ }_{1}^{1}-1\) \& \(1+2+2-1+2+2\)
\(1+2+2-1+2+2\) \& 24 \\
\hline 29644 \& \(\stackrel{\square}{0}\) \& 17-17-15 \& 148 \& 58 c
67 c \& \({ }_{7} 7\)-7 \& 8-8 \& \({ }_{1-1}\) \& \(3-2\)
\(2-2\) \& \({ }_{1}\) \& \(1+2+2-1+2+1\) \& 24 \\
\hline \[
\begin{aligned}
\& 29645 \\
\& 29646
\end{aligned}
\] \& \({ }^{\circ}\) \& \(17-17-15\)
\(17-17-15\) \& 153 \& \({ }^{67 \mathrm{c}}\) \& 7 7-7 \& 9-9 \& 1 -1 \& 3-3 \& \(1-1\) \& \(1+1+2-1+2+2\) \& 24 \\
\hline 29647 \& \(\mathrm{O}^{\prime \prime}\) \& 17-17-15 \& 151 \& 63 c \& 7-7 \& 8 8-8 \& 1 -1 \& 3-3 \& 1 -1 \& \(1+2-1+2\) \& \(\begin{array}{r}24 \\ 24 \\ \hline\end{array}\) \\
\hline 29648 \& \({ }^{\circ}\) \& 17-17-15 \& 153 \& \({ }^{66 \mathrm{c}}\) \& 7 7-7 \& \(8-8\) \& 1 1-1 \& 3-3 \& 1 1-1 \& \(1+2+2-1+2+2\)
\(1+1+2-1+1+2\) \& 24 \\
\hline 29649 \& \({ }^{\circ}\) \& 17-17-15 \& 145
151 \& 59 c
67 c \& 7 7-6 \& 6-7 \& 1 1-1 \& \(3-3\)
\(3-3\) \& \({ }_{1-1}^{1-1}\) \& \(1+1+2-1+1+2\)
\(1+2+2-1+2\) \& 24 \\
\hline \[
\begin{aligned}
\& 29650 \\
\& 29651
\end{aligned}
\] \& \({ }^{\circ}\) \& \(\left\lvert\, \begin{aligned} \& 17-17-15 \\ \& 17-17\end{aligned}\right.\) \& 151
146 \& 60 c \& 7-7 \& 8-8 \& 1 -1 \& 2-3 \& \(1-1\) \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29652 \& \% \& 17-17-15 \& 144 \& 61 c \& 7-7 \& 8 8-9 \& 1 -1 \& 3-3 \& \(1-1\) \& \(1+1-1+2+2\) \& 24 \\
\hline 29653 \& \% \& 19-19-17 \& 147 \& 56c \& \(8-7\) \& 9-9 \& 1-1 \& \(3-3\)
\(2-3\) \& \({ }_{1-1}^{1-1}\) \& \(1+2+2-1+2+2\)
\(1+2+2-1+2+2\) \& 24 \\
\hline 29654 \& 8 \& 17-17-15 \& 147 \& 59c \& 7 7-7 \& 8 8-8 \& 1 1-1 \& \({ }_{3}^{2-3}\) \& 1-1 \& \(1+2+2-1+2+2\)
\(1+2+2-1+2+2\) \& 24 \\
\hline 29655 \& \({ }_{0}{ }^{\circ}\) \& \(17-17-15\)
\(17-17-15\) \& 148
151 \& 69 c
67 c \& 7-7 \& 8-8 \& 1-1 \& 3-3 \& \(1-1\) \& \(1+2+2-1+2+2\)
\(1+1+2-1+2\) \& 24 \\
\hline 29656 \& \({ }^{\circ}\) \& 17-17-15 \& 151
149 \& 67 c
64 c \& 7 7-7 \& 8-8 \& \(1-1\) \& 3-3 \& 1 -1 \& \(1+1+2-1+2\) \& 24 \\
\hline 29658 \& \(0^{\circ}\) \& \(17-17-15\) \& 148 \& \(17+\) \& 7-7 \& 8-8 \& 1-1 \& 3-3 \& 1-1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29659 \& \({ }^{\circ}\) \& 17-17-15 \& 150 \& \(61+\) \& 7-7 \& 9-8 \& 1 -1 \& 3-3 \& 1-1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29660 \& O \& 17-17-15 \& 147 \& 67 c \& 7-7 \& 8-8 \& 1-1 \& 3-3 \& 0-1 \& \(1+2-1+2\) \& 24 \\
\hline 29661 \& - \& 17-19-15 \& 144 \& 59 c \& 7-7 \& 8 -8 \& 1-1 \& 3 3-3 \& 1 -1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29662 \& \(\bigcirc\) \& 17-17-15 \& 149 \& 60c \& 7 7-8 \& \(9-9\)
\(9-8\) \& \({ }_{1}^{1-1}\) \& 3-3 \& \({ }_{1}^{1-1}\) \& \(1+2-2-1+2\)
\(1+2+2\) \& 24 \\
\hline 29663 \& \({ }^{\circ}\) \& \(17-17-15\)
17 \& 151
150 \& \({ }_{66 \mathrm{c}}^{18}\) \& \(7-7\)
7
7 \& 9-8 \& \({ }_{1-1}\) \& \(3-3\)
\(3-3\) \& \({ }_{1}^{1-1}\) \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29665 \& \% \& \(17-17-15\) \& 149 \& 57 c \& 7-7 \& 9-8 \& 1-1 \& 3-3 \& 1 -1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29666 \& \(0^{7}\) \& 17-17-15 \& 153 \& \(55+\) \& 7-7 \& 8-8 \& 1 -1 \& \(3-3\) \& 1 -1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29667 \& \({ }^{3}\) \& \(17-17-15\) \& 150 \& 72 c \& 7 -7 \& \(8-8\)
\(8-9\) \& \({ }_{1-1}^{1-1}\) \& \(3-3\)
\(3-3\) \& \({ }_{1}^{1} 1\) \& \(1+2+2-1+2+2\)
\(1+2+2-1+2+2\) \& 24 \\
\hline 29668 \& \({ }^{\circ}\) \& \(19-19-15\)
\(17-17-15\) \& 152
154 \& 68 c
74 c \& \begin{tabular}{l}
\(7-7\) \\
7 \\
\hline
\end{tabular} \& \(8-9\)
\(8-8\) \& \({ }_{1}^{1-1}\) \& \(3-3\)
\(3-3\) \& 1 -1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29670 \& \(0^{\prime \prime}\) \& \(17-17-15\) \& 153 \& \(28+\) \& 7-7 \& 8-8 \& 1-1 \& 3-3 \& \(1-1\) \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29671 \& \(0^{\prime \prime}\) \& 17-17-15 \& 148 \& \(50+\) \& 7-7 \& 7-8 \& 1-1 \& 2-3 \& 1 -1 \& \(1+2+2-1+2+2\) \& 24
24 \\
\hline 29672 \& - \& 17-17-15 \& 152 \& 57 c \& 7-7 \& 8-8 \& 1 1-1 \& \(3-3\)
\(3-3\) \& \({ }_{1-1}^{1-1}\) \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29673 \& \% \& \(17-17-15\)
\(17-17-15\) \& 147
151 \& \({ }_{63}^{24}+\) \& \(7-7\)
\(7-7\) \& \(8-8\)
\(8-8\) \& \({ }_{1}^{1-1}\) \& \(3-3\)
\(2-2\) \& \(1-1\) \& \(1+2-2-1+2+2\) \& 24 \\
\hline 29675 \& \(\stackrel{8}{8}\) \& 17-17-15 \& 148 \& \begin{tabular}{l}
63 c \\
\(37+\) \\
\hline
\end{tabular} \& 7 7-7 \& \(8-8\)
\(9-9\) \& \(1-1\) \& 3-3 \& 1-1 \& \(1+2+2-1+2+2\) \& 24 \\
\hline 29676 \& \% \& 17-17-15 \& 149 \& 58 c \& 7-7 \& 8-8 \& 1-1 \& 3-3 \& 1 -1 \& \(1+2-1+2\) \& 24 \\
\hline 29677 \& \% \& 17-17-15 \& 150 \& 58 c \& 7-7 \& 8 -9 \& 1 -1 \& \(3-3\)
\(3-3\) \& 1 1-1 \& \(1+2+2-1+2+2\)
\(1+2+2-1+2+2\) \& 24
24 \\
\hline 29678 \& \({ }^{\circ}\) \& 19-19-17 \({ }^{17}\) \& 144 \& 64 c
65 c \& 7-7 \& \(8-8\)
\(8-8\) \& \({ }_{1-1}^{1-1}\) \& 3-3 \& \({ }_{1}^{1-1}\) \& \(1+2+2-1+2+2\)
\(1+2-1+2\) \& 25 \\
\hline S4506
S4507 \& \% \& 17-17-15-15 \& 148 \& 65 c
63 c \& 7 7-7 \& 8-8 \& \({ }_{1-1}\) \& 2-3 \& \(1-1\) \& \(1+2-1+2\) \& 25 \\
\hline S4508 \& - \& 17-17-17-15 \& 143 \& \(58+\) \& 7-7 \& 8 -8 \& 1-1 \& 3-3 \& 1 -1 \& \(1+1-1+2\) \& 25 \\
\hline S4509 \& Q \& 19-19-17-15 \& 153 \& 58 c \& \(7-7\) \& 8 8-8 \& 1 1-1 \& \(3{ }^{3}-3\) \& 1 -1 \& \(1+2=1+2\) \& 25 \\
\hline S4510 \& \({ }^{\circ}\) \& \(17-17-17-15\)
\(17-17-17\) \& 153 \& \& 7-7. \& \(8-8\)
\(8-8\) \& \(1-1\)
\(1-1\) \& 3-3 \& \({ }_{1}^{1-1}\) \& \(1+2=1+2\)
\(1+2-1+2\) \& 25 \\
\hline S4511
S4528 \& \% \& 17-17-17-15 \& 148 \& 37
72 c

c \& ${ }_{7-7}{ }^{\circ}$ \& $8-8$
$9-8$ \& ${ }_{1-1}^{1-1}$ \& 3-3 \& ${ }_{1}^{1-1}$ \& $1+2=1+2$
$1+2=1$ \& 26

\hline S4529 \& O^{7} \& 17-17-17-15 \& 149 \& 67 c \& 7-7 \& 8-8 \& 2-2 \& 3-3 \& 1-1 \& $1+2-1+2$ \& 26

\hline S4530 \& \% \& 17-19-17-15 \& 151 \& $55+$ \& 7-7 \& 9-8 \& $1-1$ \& $3-3$ \& ${ }_{1}^{1}-1$ \& $1+2-1+2+2$ \& 26

\hline S4531 \& 0° \& 17-17-15-15 \& 151 \& 67 c \& 8 -7 \& 8-88 \& 1 1-1 \& $3-3$
$3-3$ \& ${ }_{1}^{1-1}$ \& $1+2+2-1+2+2$
$1+2-1+2$ \& 26

\hline S4532
S4514 \& ? \& $17-19-17-15$
$17-19-17-15$ \& 144 \& ${ }_{63}^{45}+$ \& $7-7$
$7-7$ \& 8-8 \& 1 1-1 \& $3-3$
$2-3$ \& ${ }_{1}^{1-1}$ \& $1+2=1+2$
$1+2$ \& 26

\hline S4515 \& ? \& 17-19-17-15 \& 152 \& 56 c \& 7-7 \& 8 -8 \& 1-1 \& 3-3 \& 1-1 \& $1+2-1+2$ \& 26

\hline S4516 \& \% \& 17-17-17-15 \& 149 \& 60 c \& 7-7 \& 8 -8 \& 1 -1 \& 3-3 \& 1 -1 \& $1+2=1+2$ \& 26

\hline S4517 \& ? \& 17-19-17-15 \& 154 \& ${ }^{60 \mathrm{c}}$ \& 7 7-6 \& 9-10 \& 1-1 \& $3-3$
$3-3$ \& 1-1 \& $1+2-1+2$
$1+2-1+2$ \& 26

\hline S4518
S4519 \& $\stackrel{8}{8}$ \& 17-19-17-15 \& 151 \& 58c \& $7-7$
$8-8$ \& 8 8-8 \& ${ }_{1}^{1-1}$ \& $3-3$
$3-3$ \& ${ }_{1}^{1-1}$ \& $1+2=1+2$
$1+2$ \& 26

\hline S4520 \& \% \& 19-19-17-15 \& 152 \& 58c \& $7-7$ \& 9-8 \& 1-1 \& 3-3 \& 1-1 \& $1+2-1+2$ \& 26

\hline S4521 \& \% \& 17-19-17-15 \& 145 \& 60c \& 7 -7 \& 9-8 \& 1 -1 \& 3-3 \& $1-1$ \& $1+2-1+2$ \& 26

\hline S4522 \& \% \& 17-17-15-15 \& 151 \& ${ }_{51 \mathrm{c}}^{61}$ \& 7 -7 \& 8-8 \& 1 -1 \& $3-3$
$3-3$ \& 1 -1 \& $1+2=1+2$ \& 26

\hline S4523
$\mathbf{S 4 5 2 4}$ \& \% \& $17-17-15-15$
$17-19$ \& 149 \& 59
61 c
c \& $7-7$
$7-7$ \& 8-8 \& ${ }_{1}^{1-1}$ \& $3-3$
$3-3$ \& ${ }_{1-1}^{1}$ \& $1+2=1+2$
$1+2=1+2$ \& 26

\hline S4525 \& \% \& 19-19-17-15 \& 151 \& $50+$ \& 7-8 \& 8-9 \& 1-2 \& 3-3 \& 1-1 \& $1+2-1+2$ \& 26

\hline S4526 \& \% \& 17-19-17-15 \& 150 \& 63c \& 7-7 \& 8 -8 \& 2-1 \& 3-3 \& 1 -1 \& $1+2-1+2$ \& 26

\hline S4527 \& 8 \& 17-19-17-15 \& 152 \& ${ }_{61 \mathrm{c}}^{61}$ \& 7 7-7 \& 8 -8 \& 1 -1 \& $3-3$
$3-3$ \& 1-1 \& $1+2=1+2$ \&

\hline S4513
S4427 \& $\stackrel{\square}{8}$ \& 17-17-17-15 \& 148 \& 62 c
$41+$ \& 7-7 \& 8-7 \& ${ }_{1}^{1-1}$ \& $3-3$
$3-3$ \& ${ }_{1-1}^{1-1}$ \& $1+2-1+2$
$1+2=1+2$ \& 28

\hline S4428 \& ${ }^{\circ}$ \& 17-19-17-15 \& 159 \& 72 c \& 7-7 \& 9-9 \& 1-1 \& 3-3 \& 1-1 \& $1+2-1+2$ \& 28

\hline S4502 \& $0^{\prime \prime}$ \& 17-17-15-15 \& 150 \& 54+ \& 7-7 \& 8-8 \& 2-2 \& 3-3 \& 1 -1 \& $1+2-1+2$ \& 29

\hline S4503 \& ${ }^{0}$ \& 17-19-17-15 \& 153 \& 68 c \& 7-7 \& 9-9 \& ${ }^{2}-1$ \& $3-3$
$3-3$ \& ${ }_{1}^{1-1}$ \& $1+2-1+2$
$1+2=1+2$ \& 29
29

\hline S4505
$\mathbf{S 4 5 0 0}$ \& O° \& 17-17-17-15 \& 149 \& ${ }_{738}{ }^{38}+$ \& 7 7-7 \& 8-8 \& 1-1 \& 3-3 \& ${ }_{1}^{1} 1$ \& $1+2-1+2$
$1+1-1+2$ \& 30

\hline S4498 \& - \& 17-19-17-15 \& 145 \& $62+$ \& 7-7 \& 9-9 \& 1 -1 \& 3-3 \& 1-1 \& $1+2-1+2$ \& 31

\hline S4499 \& \% \& 17-17-17-15 \& 146 \& 65 c \& 7-7 \& 8-8 \& ${ }_{1}^{1-1}$ \& $3-3$
$3-3$ \& ${ }_{1-1}^{1-1}$ \& $1+2-1+2$ \& 31
32

\hline 29626 \& 0° \& $17-17-15$ \& 156 \& 71 c \& 7-7 \& 9 -9 \& 1-1 \& 3-3 \& 1-1 \& $1+2+2-1+2+2$ \&

\hline
\end{tabular}

Scale counts in Thamnophis ordinordes ordinoides-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
S4447	\%	17-19-17-15	147	63 c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	33
S4482	\%	17-19-17-15	142	61c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	34
S4483	\%	$17-17-17-15$	146	61 c	7-7	9—9	1-1	3-3	1-1	$1+3-1+2$	34
S4445	\%	$17-17-15-15$	146	58 c	7-7	7-8	2 -2	3-3	1-1	$1+1-1+2$	35
S4481	\%	$17-17-15-15$	145	72 c	7 -7	8-8	1-1	3-3	1-1	$1+2-1+2$	36
S4470	\%	$17-17-15-15$	148	59c	7-7	9-8	1-1	3-3	1-1	$1+2-1+2$	37
S4472	\%	$17-17-15-15$	148	$59+$	7 -7	7-8	1-1	2-2	1-1	$1+2-1+2$	37
S4475	\bigcirc	$17-17-15-15$	148	57 c	7-7	9-8	1-1	$3-3$	1-1	$1+2-1+2$	37
S4477	0^{7}	17-17-17-15	147	67 c	7-7	8 -8	$1-1$	3-2	1-1	$1+2-1+2$	37
S4478	\%	$17-17-15-15$	148	63c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	37
S4217	\%	17-19-17-15	151	$35+$	7-7	9-9	1-1	3-3	1-1	$1+2-1+2$	38
29419	\%	$17-17-15$	139	57 c	6-6	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	38
29420	${ }^{\circ}$	$17-17-15$	153	70 c	7 -7	8-8	1-1	3-2	1-1	$1+2+2-1+2+2$	38
29421	0^{*}	17-17-15	145	71c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	38
29422	0^{7}	17-19-15	150	$47+$	7-7	8-8	1-1	$3-3$	1-1	$1+2+2-1+2+2$	38
29423	${ }^{7}$	17-17-15	151	$77+$	7 -7	$9-8$	1-1	3-3	1-1	$1+2+2-1+2+2$	38
29424	\%	17-17-15	151	58c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	38
29425	8	$17-17-15$	149	66c	7-7	8-8	1 -1	3-3	1-1	$1+2-1+2$	38
29426	0^{7}	17-19-15	151	71c	8 -7	8-8	1-1	3-3	$0-0$	$1+2+2-1+2+2$	38
29427	\%	17-17-15	145	63 c	7-7	8-9	1-2	3-3	1-1	$1+2+2-1+2+2$	38
29428	\bigcirc	$17-17-15$	149	61c	7-7	8-8	1 -1	3-3	1-1	$1+2+2-1+2+2$	38
29429	$0^{\prime \prime}$	$17-17-15$	144	69c	7 -7	9-9	1 -1	3-3	1 -1	$1+2+2-1+2+2$	38
29430	\bigcirc	17-17-15	144	61c	7 -7	8-8	2-2	3-3	1-1	$1+1-1+1$	38
29431	0^{7}	17-17-15	149	67 c	7 -7	8-8	1-1	3-3	1-1	$1+2+2-1+1+2$	38
29432	0^{7}	19-19-15	155	72 c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	38
29433	$\stackrel{8}{8}$	17-17-15	143	56 c	7-7	8 -8	1-2	3-3	1-1	$1+2+2-1+2+2$	38
29.434	\%	17-19-15	149	58 c	7 -7	8-8	1 -1	$2-2$	1-1	$1+2+2-1+2+2$	38
29435	8	$17-17-15$	145	63 c	7 -7	9 -9	1 -1	3-3	1-1	$1+2+2-1+2+2$	38
29436	0^{7}	17-17-15	152	72 c	7-7	8 -8	1-1	3-3	1-1	$1+2+2-1+2+2$	38
29437	$0^{\prime \prime}$	$17-17-15$	147	75 c	7 -7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	38
29438	\%	$17-17-15$	142	62c	7-7	8 -7	1-1	3-3	1-1	$1+2+1-1+1+2$	38
29439	0^{*}	17-17-15	152	72c	7 -7	7 -7	2 -1	3-3	1-1	$1+2+2-1+2+2$	38
29440	\%	17-17-15	144	60 c	7 -7	8-8	1-1	3-3	0-0	$1+2+2-1+2+2$	38
29493	0^{7}	$17-17-15$	162	71 c	7 -7	9-9	1-1	3-3	1-1	$1+2+2-1+2+2$	39
S4448	\%	17-17-17-15	143	65c	7 -7	8-8	1-1	$3-2$	1-1	$1+2-1+2$	40
29375	\%	$17-17-15$	143	58 c	7-7	9-9	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29376	\%	$17-17-15$	145	63c	7 -7	9-9	$1-2$	3-3	1-1	$1+2+2-1+2+2$	41
29377	\%	$?-17-15$	135	64c	7-7	9-8	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29378	8	17-17-15	149	63 c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29379	0^{4}	$17-17-15$	151	68c	7-7	9-9	1-1	3-3	1-1	$1+1+2-1+2+2$	41
29380	\%	$17-17-15$	140	63c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	41
29381	0^{1}	17-17-15	147	$62+$	6-6	8-8	1-1	3-3	1 -1	$1+2+2-1+2+2$	41
29382	\%	$17-17-15$	146	65c	7-7	9-9	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29383	0^{7}	17-17-15	139	66c	7 -7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29384	$0^{\prime \prime}$	$17-17-15$	146	72 c	7-7	8 -8	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29385	$\stackrel{+}{+}$	17-17-15	145	70c	7 -7	9-9	$2-2$	3-3	1-1	$1+2-1+2$	41
29386	\%	$17-17-15$	142	62c	$7-7$	$9-8$	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29387	\%	17-17-15	139	59c	7-6	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	41
29388	\bigcirc	17-17-15	146	57 c	$7-7$	8-9	1-1	3-3	1-1	$1+2+3-1+2+2$	41
29389	$\%$	17-17-15	145	57 c	$7-7$	$9-9$	2-1	3-3	? - 1	$1+2-1+2$	41
29397	${ }^{\circ}$	19-19-15	151	$78+$	8 -8	9-9	1-1	3-3	1-1	$1+2+2-1+2+2$	41
S4444	0^{7}	$17-17-15-15$	149	68c	7 -7	8-8	1-1	3-3	1-1	$1+2-1+1$	42
S4452	\bigcirc	17-17-17-15	143	62 c	$7-7$	8 -8	1-1	3-3	1 -1	$1+2-1+2$	43
S4453	\%	$17-17-15-15$	142	65 c	7-7	8-8	1-2	3-3	1-1	$1+2-1+2$	43
S4454	8	$17-17-17-15$	149	62 c	7-7	8 -8	1-1	2-3	$1-1$	$1+2-1+2$	43
S4455	${ }^{\circ}$	$17-17-15-15$	149	69c	7 -7	8-8	1-1	3-3	1-1	$1+2-1+2$	43
S4456	8	17-17-17-15	144	64 c	7 -7	9-8	1-1	3-3	1-1	$1+1-1+2$	43
S4457	${ }^{\circ}$	17-17-15-15	151	66 c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	44
S4458	\%	$17-19-17-15$	147	62 c	7-7	10-9	1-1	3-3	1-1	$1+2-1+2$	44
S4459	\%	$17-17-17-15$	141	$51+$	6-6	8-7	1-1	3-3	1 -1	$1+2-1+2$	44
S4460	\%	$17-17-17-15$	139	61c	7 -7	9-9	1-1	3-3	1-1	$1+2-1+2$	44
S4461	${ }^{7}$	$17-17-15-15$	147	70c	6-7	8-8	1-1	3-3	1-1	$1+2-1+2$	44
S4462	${ }^{7}$	$17-17-17-15$	150	68c	7-7	9-8	1-1	3-3	1-1	$1+2-1+2$	44
S4464	\bigcirc	17-17-17-15	145	59c	7 -7	$9-8$	1-1	3-3	1-1	$1+2-1+2$	44
S4465	0^{7}	$17-17-15-15$	140	$40+$	7 -7	8-8	1-1	2-3	1-1	$1+2-1+2$	44
S4466	$\%$	$17-17-17-15$	139	$56+$	7 -7	8 -9	1-1	2 -3	1-1	$1+2-1+2$	44
S4467	8	$17-17-15-15$	143	59 c	7 -8	8-8	1-1	3-3	1-1	$1+2-1+2$	44
S4468	0^{7}	17-17-15-15	151	64 c	7-7	8 -8	2-1	3-3	1-1	$1+2-1+2$	44
S4436	\%	17-19-17-15	142	$50+$	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	45
29373	¢	$17-17-15$ $17-17-15$	139	61 c	7 -7	$9-8$	1 -1	3-3	$1-1$	$1+2-1+3$	46
29366	${ }^{8}$	$17-17-15$	147	64 c	7 7-7	8-8	1 -1	$3-3$ $3-3$	1-1	$1+2+2-1+1+2$ $1+2+2-1+2+2$	47
29268	0^{7}	$17-17-15$	155	78 c	7 -7	9-9	1 -1	$3-3$ $3-3$	$1-1$	$1+2+2-1+2+2$	48
29269		$17-17-15$ $17=17-15$	144 144	67c	7-7	8-8	1-1	$3-3$ $3-3$	1-1	$1+2+2-1+2+2$ $1+2+2-1+2+2$	48
29271	\%	$17-17-15$	147	59c	7 -7	8-9	1 -1	3-3	1 -1	$1+2+2-1+2+2$ $1+2+2+2$	48

Scale counts in Thamnophis ordinoides ordinoides-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	$\begin{aligned} & \text { Local- } \\ & \text { ity } \end{aligned}$
29272	0^{\prime}	$17-17-15$	142	72c	7-7	8-9	1-1	3-3	1-1	$1+2+2-1+2+2$	48
29273	\%	17-17-15	144	$41+$	8-8	9-9	1-1	3-3	1-1	$1+2+2-1+2+2$	48
29274	0^{7}	$17-17-15$	147	77 c	7-7	9-8	1-1	3-3	1-1	$1+2+2-1+2+2$	48
29275	0^{7}	$17-17-15$	151	78 c	7 -7	8 -9	1-1	3-3	1-1	$1+2+2-1+2+2$	48
29276	\%	17-17-15	144	$66+$	$7-7$	8-8	2-1	3-3	1-1	$1+2+2-1+2+2$	48
29277	\%	17-17-15	143	65c	$8-7$	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	48
29278	\%	17-17-15	144	$45+$	7 -7	8-8	1-1	2-3	1-1	$1+2-1+2$	48
29279	¢	17-17-15	145	65 c	7-7	7 -7	1-1	3-3	1-1	$1+2-2+2$	48
29213	\%	17-17-15	141	63 c	5-5	$6-7$	1-1	$2-2$	1-1	$1+2+2-1+2+2$	49
29214	\%	17-17-15	137	60c	7 -7	9-8	1-1	3-3	1-1	$1+2+2-1+2+2$	49
29215	\%	17-17-15	142	59c	7 -7	8 -8	1-1	3-3	1-1	$1+2+2-1+2+2$	49
29216	\%	17-17-15	143	64 c	8-8	9-9	1-2	3-3	1-1	$1+2+3-1+2+2$	49
S4265	0^{7}	$17-17-17-15$	143	72c	$8-7$	9-9	1-1	3-3	1-1	$1+2-1+2$	50
S4267	\%	$17-17-15-15$	144	$48+$	7-7	9-9	1-1	3-3	1-1	$1+2-1+2$	50
S6315	9	$17-17-15-15$	137	65c	7-7	8-8	1-1	2-2	1-1	$1+2-1+2$	51
29236	0^{4}	$17-17-15$	143	73c	7-7	8-8	1-1	$2-2$	1-1	$1+2+2-1+2+2$	51
29237	\%	17-17-15	144	65c	7-7	8-8	1-1	3-2	1-1	$1+2-1+2$	51
29238	\%	17-15-15	151	68 c	7-7	$9-9$	1-1	2-2	1-1	$1+2+2-1+2+2$	51
29239	\%	17-15-15	141	61c	7-7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	51
29240	\%	17-17-15	141	67c	7 -7	8-9	1-1	3-3	1-1	$1+2+2-1+2+2$	51
29241	9	17-17-15	144	60c	7 -7	7 -7	1-1	3-3	1-1	$1+2-1+2$	51
29242	\%	17-17-15	140	62c	7-7	9-10	1-1	3-3	1-1	$1+2-1+2$	51
29243	0^{7}	17-17-15	142	72c	7 -7	8 -8	1-1	3-3	1-1	$1+2+1-1+2+2$	51
29244	\%	17-17-15	140	690	7 -7	8 -8	1-1	3-3	1-1	$1+2+2-1+2+2$	51
29245	9	17-17-15	139	60c	7 -7	8-8	1-1	2-3	1-1	$1+2+2-1+2+2$	51
29246	\%	17-17-15	137	$58+$	7 -7	7 -8	1-1	2-2	1-1	$1+2-1+2$	51
29247	${ }^{7}$	17-17-15	144	$52+$	7-7	8 -8	1-1	3-3	1-1	$1+2+2-1+2+2$	51
29248	${ }^{7}$	$17-17-15$	140	$38+$	7 -7	8-8	1-1	3-3	1-1	$1+2+2-1+2+2$	51
29249	${ }^{7}$	$17-17-15$	143	70 c	7 -7	7-8	1-1	$3-3$	1-1	$1+2+2-1+2+2$	51
29250	${ }^{\circ}$	17-17-15	138	65 c	7-7	8-8	1 -1	3-3	1-1	$1+2+2-1+2+2$	51
29093	0^{7}	17-17-15	142	72 c	7-7	$7-7$	1-1	2-1	1-1	$1+2+2-1+2+2$	52
29091	\%	17-17-15	148	58c	7-7	9-9	1 -1	3-3	1 -1	$1+2+2-1+2+2$	52
S7211	0^{7}	$17-17-15$	148	63 c			1-1	-1	-1	$1+2-1+2$	53
30002	\%	17-17-15	145	64	$7-7$	9-9	2-1	3-3	1-1	$1+2+2-1+2+2$	54
29578	\%	19-19-17	154	63	7 -7	$9-9$	1-1	3-3	1-1	$1+3-1+2$	55
29579	0^{7}	17-17-15	162	77	$6-7$	8-8	1 -1	3-3	$1-1$	$1+2-1+2$	55
S4485	0^{7}	17-19-17-15	156	80 c	7 -7	$9-9$	2-1	$3-3$	1-1	$1+2-1+2$	56
S4486	\bigcirc	17-19-17-15	143	62 c	7 -7	9-9	2-1	3-3	1-1	$1+2-1+2$ $1+2-1+2$	56
S4487		17-17-17-15	150	$42+$	7-7	$9-9$ $9-9$	1 -1	$3-3$ $2-3$	1-1	$1+2-1+2$	56 56
S4488 S4490	${ }^{\circ}$	$17-19-17-15$ $17-19-17-15$	156	81 c 70 c	8-8	$9-9$ $8-8$	$1-1$ $2-2$	$2-3$ $2-3$	1-1	$1+2-1+2$ $1+2-1+2$	56 56
S4490 $\mathbf{S 4 4 9 1}$	${ }^{0}{ }^{7}$	$\left\lvert\, \begin{aligned} & 17-19-17-15 \\ & 17-19-17-15\end{aligned}\right.$	149 154	$70 c$ $76 c$	$7-7$ $7-7$	$8-8$ $8-8$	$2-2$ $2-1$	$2-3$ $3-3$	1 -1	$1+2-1+2$ $1+2-1+2$	56 56

Very interesting from the standpoint of scale variation are the following counts showing, in each group,-first, the counts for the adult female and then those for the well-developed embryos taken from her. In the case of No. S4427 the series is not complete, for only six of the twenty-one embryos of this brood could be counted.

Number	Sex	Scale rows	Gastrosteges	$\begin{aligned} & \text { Uro- } \\ & \text { steges } \end{aligned}$	Supra- labials	Infra- labials	Preoculars	Postoculars	Loreals	Temporals	Locality
S4509	우	19-19-17-15	153	58c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	25
S4509 (1)	.	17-17-15	159	69c	7-7	8-8	$2-2$	3-3	1-1	$1+2-1+2$	25
S4509 ${ }^{(2)}$.	17-19-17	150	55c	7-7	8-8	$2-1$	3-3	1-1	$1+2-1+2$	25
S4509 ${ }^{(3)}$		19-19-17	155	68c	7-7	8-9	$2-2$	3-3	1-1	$1+2-1+2$	25
S4509 (4)		19-19-17	151	62c	$7-7$	$9-9$	1-1	3-3	1-1	$1+2-1+2$	25
S4509 ${ }^{(5)}$		19-19-17	150	63c	7-7	8-8	$2-2$	$3-3$	1-1	$1+2-1+2$	25
S4509 (6)		19-19-17	157	69c	$7-7$	$8-8$	$1-1$	3-3	1-1	$1+2-1+2$	25
\$4509 ${ }^{(7)}$		19-19-17	154	66 c	$7-7$	$9-9$	$1-2$	3-3	1-1	$1+2-1+2$	25
S4509 ${ }^{8}$)		19-19-17	154	68c	7-7	8-9	1-1	3-3	1-1	$1+2-1+2$	25
S4517	9	17-19-17-15	154	60c	7-6	9-10	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{(1)}$		17-17-15	151	62c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{(2)}$	8	$17-17-15$	151	70 c	$7-7$	$9-8$	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{(3)}$		17-17-15	150	68c	7-7	$7-7$	1-1	3-3	1-1	$1+2-1+2$	26
S4517 (4)	0^{7}	17-17-15	150	71c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{5}$)	0^{7}	17-17-15	153	66 c	7-7	8-9	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{6}$)	0^{7}	17-17-15	146	71 c	7-7	$8-9$	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{(7)}$	σ^{2}	17-17-15	148	75 c	7-7	8-8	$1-1$	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{8}$)	.	$17-17-15$	147	61c	$8-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{(9)}$		$17-17-15$	150	59c	7-7	8-7	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{(10}$)		17-17-15	149	62 c	$7-7$	7-8	1-1	3-3	1-1	$1+2-1+2$	26
S4517 ${ }^{(11)}$		17-17-15	149	63 c	$7-7$	$7-7$	1-1	$3-3$	1-1	$1+2-1+2$	26
S4517 ${ }^{12}$)	0^{7}	$17-17-15$	149	64 c	$7-7$	$8-9$	1-1	$3-3$	1-1	$1+2-1+2$	26
S4526	¢	17-19-17-15	150	63 c	$7-7$	$8-8$	$2-1$	3-3	$1-1$	$1+2-1+2$	26
S4526 ${ }^{(1)}$		17-17-15	148	60c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4526 ${ }^{(2)}$		17-17-15	156	76 c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4526 ${ }^{(3)}$		17-19-17-15	151	74 c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4526 (4)		19-19-17-15	145	64c	$8-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4526 ${ }^{6}$)		17-17-15	145	58 c	7-7	8-8	1-1	3-3	$1-1$	$1+2-1+2$	26
S4526 ${ }^{6}$)		19-19-17-15	148	56 c	7-7	8-8	1-1	$3-3$	1-1	$-1+2$	26
S4526 ${ }^{(7)}$		17-17-15	154	73 c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4526 ${ }^{8}$)		17-17-15	149	$76 c$	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	26
S4527	아	17-19-17-15	152	61c	7-7	8-8	1-1	3-3	$1-1$	$1+2-1+2$	26
S4527 ${ }^{(1)}$		17-19-17-15	154	59c	7-7	$9-9$	1-1	3-3	1-1	$1+2-1+2$	26
$\mathrm{S} 4527{ }^{(2)}$		17-19-17-15	149	60c	8-7	$9-9$	1-1	2-3	1-1	$1+2-1+2$	26
S4527 ${ }^{(3)}$	07	17-19-17-15	150	67 c	$8-7$	$9-8$	1-1	3-3	1-1	$1+2-1+2$	26
S4527 ${ }^{(1)}$.	17-19-17-15	156	57 c	$7-7$	$9-9$	1-1	3-3	1-1	$1+2-1+2$	26
S4527 ${ }^{\text {(5) }}$.	17-19-17-15	151	58c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+3$	26
S4527 ${ }^{6}$)		17-19-17-15	154	64c	7-7	8-9	1-1	2-3	1-1	$1+2-1+2$	26
S4527 ${ }^{(7)}$	07	17-19-17-15	149	67 c	7-7	9-8	1-2	3-3	1-1	$1+2-1+2$	26
S4527 ${ }^{(8)}$.	17-19-17-15	151	60c	$7-7$	$9-9$	1-1	3-3	1-1	$1+2-1+1$	26
S4.527 $\left.{ }^{(}\right)$		17-19-17-15	152	57 c	7-7	8-8	$1-1$	$2-3$	1-1	$1+2-1+2$	26
S4527 ${ }^{18}$)	0^{7}	17-19-17-15	155	61 c	$7-7$	8-9	1-1	3-3	1-1	$1+2-1+2$	26
S4527 (11)	8	17-17-15-15	148	42 c	7-7	$9-8$	$2-1$	2-3	1-1	$1+1-1+1$	26
S4527 (12)	-	19-19-17-15	149	59c	$7-7$	$9-8$	1-1	3-3	1-1	$1+2-1+2$	26
S4427	\%	19-19-17-15	151	$41+$	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	28
S4427 ${ }^{(1)}$.	19-19-17	153	65c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	28
S4427 ${ }^{4}$)		17-19-17	158	70 c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	28
S4427 ${ }^{5}$)		19--19-17-15	154	56 c	$7-7$	$9-9$	1-1	3-3	1-1	$1+3-1+3$	28
S4427 ${ }^{(7)}$		19-19-17	157	59c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	28
S4427 ${ }^{(13}$)	.	17-19-17	153		$7-7$	8-8	1-1	3--3	1-1	$1+2-1+2$	28
S4427 $\left.{ }^{(19}\right)$	\because	19-19-17	152	58 c	7-7	$9-9$	1-1	3-3	1-1	$1+2-1+2$	28
S4447	\bigcirc	17-19-17-15	147	63 c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	33
S4447 ${ }^{(1)}$.	17-17-15	144	58 c	$7-7$	8-8	1-1	3-3	$1-1$	$1+2-1+2$	33
S4447 ${ }^{(2)}$	*	17-17-15	140	55c	$7-7$	$9-8$	$2-2$	3-3	1-1	$1+2-1+2$	33
S4447 ${ }^{5}$)	.	17-17-15	144	65c	$7-7$	8-8	1-1	3-3	$1-1$	$1+3-1+2$	33
S4447 (4)		17-17-15	142	54 c	$7-7$	8-8	1-1	3-3	1-1	$1+2-1+2$	33
S4447 (5)	σ^{7}	17-17-15	142	60c	$7-7$	8-8	$2-2$	3-3	1-1	$1+2-1+2$	33
S4447 ${ }^{6}$)	.	$17-17-15$	141	58c	$7-7$	8-9	1-2	3-3	1-1	$1+2-1+2$	33
S4447 ${ }^{7}$)		17-17-15	150	67 c	7-7	8-8	$2-2$	3-3	1-1	$1+2-1+2$	33
S4447 (\%)		17-17-15	141	63 c	$7-7$	8-8	1-1	$2-2$	1-1	$1+2-1+2$	33
S4447 ${ }^{(9)}$		17-17-15	144	59 c	$7-7$	$8-8$	1-2	3-3	1-1	$1+2-1+2$	33
S4447 ${ }^{(10)}$		17-17-15	147	55c	7-7	8-8	1-1	3-3	1-1	$1+2-1+2$	33
S4447 ${ }^{(11)}$		$17-17-15$	147	61c	$7-7$	8-8	$2-2$	$3-3$	1-1	$1+2-1+2$	33
S4447 ${ }^{(12)}$		$17-17-15$	142	57c	$7-7$	8-8	1-1	$3-3$	$1-1$	$1+2-1+2$	33

Remarks.-This is the common garter-snake of the northwest coast. It is of small size. The largest specimen examined measures 590 mm . to base of tail. The head is small, not so distinct from the neck as in other races, and the labials are reduced in number.

The coloration is very variable. The dorsal line frequently is absent or developed only on the neck. The lateral lines also may be absent. Specimens may be heavily spotted or without any marking, either lines or spots. The dorsal line usually is yellow but may be red, and there often is red elsewhere in the coloration, as on the gastrosteges. The lower surfaces often are dark, and the coloration everywhere may be very dusky.

Specimens with heavy spotting and dark pigmentation of the gastrosteges resemble T. o. vagrans, but usually may be easily distinguished by their scale characters.

Specimens showing no dorsal line resemble T. o. couchii, but here again the scale characters are quite different.

The closest relationship of this subspecies undoubtedly is with T. o. atratus, yet there can be no doubt as to the subspecific distinctness of the two forms. The differences in the number of superior and inferior labials, scale-rows and gastrosteges should be sufficient aid toward their correct determination, and the general appearance usually is quite different. Certain specimens, however, are so nearly intermediate in one or more of their characters that students might differ in opinion as to their identity. Such specimens, as set forth under head of T. o. atratus, show real geographic intergradation. So far as specimens examined by us show, this intergradation occurs only in Del Norte County, California, where the ranges of the two forms meet and perhaps overlap slightly. Many of the specimens from this county are typical of either one or the other subspecies,-ordinoides or atratus,-and most of the intergrades seem to be nearer to the latter type than to the former. South of Del Norte County no tendency toward T.o.ordinoides has been observed in T. o. atratus, unless it be that the rather frequent absence of the dorsal line in specimens from Humboldt and Mendocino counties may be so regarded.

Ruthven considered two preoculars to be a character of much importance in T. o. ordinoides. Our figures show that
fourteen per cent only of the specimens have two preoculars on one or both sides of the head. Snakes of the T. o. vagrans type occur in portions of the area occupied by T. o. ordinoides, and often have two preoculars. There seems to be no good reason for calling them T. o. ordinoides. It appears much more logical to consider them T. o. biscutatus, as was done in 1897, although specimens to show the continuity of range from the Klamath Lakes to Puget Sound are not at hand.

Thamnophis ordinoides atratus (Kennicott)

Coast Garter-Snake.
Diagnosis.-Normally with eight supralabials and ten infralabials. Scales usually in nineteen, sometimes in twenty-one, rows. Gastrosteges average more numerous than in T. o. ordinoides, but fewer than in the other subspecies. Coloration very variable, striped, spotted, or (rarely) unicolor, often with some red. Preocular usually single. Size larger than T. o. ordinoides.

Type Locality.-California. (Brown states that the same specimens served as the types of Cope's E. i. vidua, and that they are labeled San Francisco.)
Synonyms.-Eutcria infernalis of many authors but not of Blainville. Eutania infernalis vidua Cope, 1892 ; type locality San Francisco, California.

Range.-This subspecies occupies the coast region of California from Del Norte to Santa Barbara counties. So far as known, the area inhabited by it includes the coast ranges and their valleys but not the great valleys of the Sacramento and San Joaquin. It occurs in both the Transition and Upper Sonoran zones.

We have examined specimens from the following locali-ties:-

1. Near Siskiyou, Jackson Co., Oregon.
2. Gasquet, Del Norte Co., California.
3. Trinidad, Humboldt Co., Cal.
4. Eureka, Humboldt Co., Cal.

Thammophis ordinoides utratus, Coast Garter-Snake:-Photograph from living specimen collected at Gilroy Hot Springs, Santa Clara Co., California, July 5, 1915.
$2+2$
5. Ferndale, Humboldt Co., Cal.
6. Alton, Humboldt Co., Cal.
7. Carlotta, Humboldt Co., Cal.
8. Cuddeback, Humboldt Co., Cal.
9. Maltole River, White Thorn, Humboldt Co., Cal.
10. South Fork Eel River, Garberville, Humboldt Co., Cal.
11. Anderson, Shasta Co., Cal.
12. Bald Hill, Mendocino Co., Cal.
13. Irishes, Mendocino Co., Cal.
14. Covelo, Mendocino Co., Cal.
15. Ten Mile River, Mendocino Co., Cal.
16. Sherwood, Mendocino Co., Cal.
17. Mendocino, Mendocino Co., Cal.
18. Near Mendocino City, Mendocino Co., Cal.
19. Big River, 7 miles from mouth, Mendocino Co., Cal.
20. Comptche, Mendocino Co., Cal.
21. Albion River, 2 miles below Comptche, Mendocino Co., Cal.
22. Roberts Creek, near Ukiah, Mendocino Co., Cal.
23. Navarro River, near Philo Crossing of Elk on Ukiah

Stage Road, Mendocino Co., Cal.
24. Garcia River, $1 / 2$ to 10 miles above mouth, Mendocino Co., Cal.
25. Point Arena, Mendocino Co., Cal.
26. Pieta, Mendocino Co., Cal.
27. Gualala, Mendocino Co., Cal.
28. Middleton, Lake Co., Cal.
29. Rumsey, Yolo Co., Cal.
30. Wheatfield Fork, Gualala R., Sonoma Co., Cal.
31. Near Skaggs Springs, Sonoma Co., Cal.
32. Skaggs Springs, Sonoma Co., Cal.
33. Cazadero, Sonoma Co., Cal.
34. Duncan Mills, Sonoma Co., Cal.
35. Austins Creek, Sonoma Co., Cal.
36. Kidd Creek, Sonoma Co., Cal.
37. Guerneville, Sonoma Co., Cal.
38. Freestone, Sonoma Co., Cal.
39. Berryessa Creek, Napa Co., Cal.
40. St. Helena, Napa Co., Cal.
41. Vacaville, Solano Co., Cal.
42. Inverness, Marin Co., Cal.
43. Point Reyes, Marin Co., Cal.
44. Tocaloma, Marin Co., Cal.
45. Olema, Marin Co., Cal.
46. Mill Valley, Marin Co., Cal.
47. Walnut Creek, Contra Costa Co., Cal.
48. Berkeley, Alameda Co., Cal.
49. Oakland, Alameda Co., Cal.
50. San Leandro, Alameda Co., Cal.
51. Calaveras Valley, Alameda Co., Cal.
52. San Francisco, San Francisco Co., Cal.
53. San Bruno, San Mateo Co., Cal.
54. Portola, San Mateo Co., Cal.
55. Summit Searsville Road above Woodside, San Mateo Co., Cal.
56. Mountains between Stanford University and Spanishtown, San Mateo Co., Cal.
57. Corte Madera Creek, San Mateo Co., Cal.
58. Butano Basin, San Mateo Co., Cal.
59. La Honda, San Mateo Co., Cal.
60. Pescadero, San Mateo Co., Cal.
61. Near Stanford University, Santa Clara Co., Cal.
62. Corte Madera Canyon, Santa Clara Co., Cal.
63. Stevens Creek, Santa Clara Co., Cal.
64. Santa Clara, Santa Clara Co., Cal.
65. San Jose, Santa Clara Co., Cal.
66. Smith Creek, Mount Hamilton, Santa Clara Co., Cal.
67. Uvas Creek, Santa Clara Co., Cal.
68. Upper Coyote Creek, near head, Santa Clara Co., Cal.
69. Gilroy Hot Springs, Santa Clara Co., Cal.
70. Waddell Creek, Santa Cruz Co., Cal.
71. Near Swanton, Santa Cruz Co., Cal.
72. Felton, Santa Cruz Co., Cal.
73. Soquel, Santa Cruz Co., Cal.
74. Salinas River, near Blanco, Monterey Co., Cal.
75. Seaside, Monterey Co., Cal.
76. Pacific Grove, Monterey Co., Cal.
77. Carmel, Monterey Co., Cal.
78. San Macento, Monterey Co., Cal.
79. Garapatos Creek, Monterey Co., Cal.
80. Mill Creek, Monterey Co., Cal.
81. Little Sur River, Monterey Co., Cal.
82. Partington Canyon, Monterey Co., Cal.
83. Morro, San Luis Obispo Co., Cal.
84. Oceano, San Luis Obispo Co., Cal.
85. Santa Ynez River, Santa Barbara Co., Cal.

Material.-Three hundred and sixty-three specimens from these localities have been studied by us.

Variation.-The variations shown by these specimens are as follows:

The loreal is $1-1$ in all specimens. Preoculars are $1-1$ in three hundred and thirty-nine, or $93 \% ; 2-2$ in fifteen, or 4%; $1-2$ in seven, or 1%; and $2-3$ in one. Postoculars are 3-3 in three hundred and twenty-one, or $88 \% ; 3-4$ in fifteen, or $4 \% ; 2-3$ in ten, or $2 \% ; 2-2$ in eight, or $2 \% ; 4-4$ in six, or $1 \% ; 4-5$ in one, and $1-2$ in one. Temporals are $1+2-1+2$ in two hundred and eighty, or $77 \% ; 1+2-1+3$ in forty-four, or $12 \% ; 1+3-1+3$ in sixteen, or $4 \% ; 1+1-1+1$ in ten, or $2 \% ; 1+1-1+2$ in five, or $1 \% ; 1+1-2+2$ in two, $1+2-$ $2+2$ in two, $1+1-1+3$ in one, and $1+3-2+2$ in one. The supralabials are 8-8 in three hundred and nine, or $85 \% ; 7-7$ in twenty-six, or $7 \% ; 7-8$ in twenty-five, or $6 \% ; 8-9$ in one, and $9-9$ in one. The infralabials are $10-10$ in two hundred and seventy-two, or $75 \% ; 9-10$ in forty-four, or $12 \% ; 9-9$ in thirty-two, or $8 \% ; 10-11$ in five, or $1 \% ; 8-9$ in three, $8-10$ in three, $11-11$ in two, and $8-8$ in one. The scalerows are 19-19-17 in two hundred and fifty-five, or 71%; $19-21-17$ in twenty-seven, or $7 \% ; 21-21-17$ in twentytwo, or $6 \% ; 19-21-19$ in twenty-one, or $6 \% ; 21-21-19$ in nine, or $2 \% ; 21-19-17$ in six, or $1 \% ; 17-19-17$ in four, or $1 \% ; 19-19-19$ in three, $19-20-19$ in three, $20-21-19$ in one, 17-18-17 in one, 19-19-15 in one, and 20-21-17 in one. The gastrosteges vary in number from 140 to 172 , males having from 146 to 172 , females from 140 to 168 ; the average in one hundred and fifty males is 158 , in two hundred and four females, 153. The urosteges vary from 52 to 93 , males having from 63 to 93 , females from 52 to 98 ; the average in one hundred and thirty-one males is 81 , in one hundred and sixty-eight females, 74. These variations are shown in full in the following table of scale-counts.

Scale counts in Thamnophis ordinoides atratus

Number	Sex	Scale rows	Gastro－ steges	Uro－ steges	Supra－ labials	Infra－ labials	Pre－ oculars	Post－ oculars	Loreals	Temporals	$\begin{aligned} & \text { Local- } \\ & \text { ity } \end{aligned}$
S4440	\％	19－21－19－17	159	75 c	8－8	10－10	1－1	3－3	1 －1	$1+2-1+2$	1
S4442	0^{7}	19－21－19－17	161	83 c	8－8	10－10	1－1	3－3	1－1	$1+2-1+2$	1
S4266	\％	19－20－19－17	157	${ }^{74 \mathrm{c}}$	8－8	10－10	1－1	3－3	1－1	$1+3-1+3$	
29055	\％	19－19－17	149	${ }_{68}^{53}+$	7－8	$9-9$	$1-1$	3－3	$1-1$	$1+2+2-1+2+2$	3
29056	$\stackrel{8}{8}$	17－18－17－15	151		8 8－8	9－9	1－1	3－3	1－1	$1+2-1+2+2$	3
$\begin{aligned} & \mathrm{C} 2320 \\ & \mathrm{C} 2322 \end{aligned}$	＋	$\left\lvert\, \begin{aligned} & 21-19-17 \\ & 19-19-17\end{aligned}\right.$	150	${ }_{69}^{50}+$	$7-8$ 7 7	co－10	$1-1$ $1-1$	$3-3$ $3-3$ 3	1－1	$1+2+2-1+2+2$ $1+2+3-2+2+2$	4
$\mathrm{C}_{2} 232$	$\stackrel{+}{+}$	19－19－17	153	69	7－8	8－8	${ }_{1-1}$	$3-3$ $3-3$	${ }_{1-1}^{1-1}$	$\underline{1+2+3-2+2+2}$	4
C2367	\bigcirc	21－21－17	154	70	8－8	10－9	1－1	3－3	$1-1$	$1+2+3-1+3+2$	5
28829	0°	19－19－17	161	84	8 －8	10－10	$1-1$	3－3	1－1	$1+2+2-1+2+2$	7
28830	\％	19－19－17	153	$50+$	7－8	10－10	1－1	3－3	1－1	$1+3-1+3$	7
28831	\bigcirc	19－19－17	151	72	7 －7	10－10	1 －1	3－3	1－1	$1+2+2-1+2+2$	7
28832 2883	ó	退 $19-21-17$	155 156	67 82	$7-7$ $8-8$	$10-10$ $10-10$	${ }_{1-1}^{1}$	$3-3$ $3-3$	$1-1$ $1-1$	$1+2+2-1+2+2$ $1+2+2-1+2+2$	7
28834	O	19－19－17	158	70	8－8	10－10	1 1－1	$3-3$ $3-3$	${ }_{1}^{1-1}$	$1+2+2-1+2+2$ $1+2+2-1+2+2$	7
28837	0^{7}	19－19－17	157	85	$7-7$	10－10	1－1	3－3	1－1	$1+2+2-1+2+2$	7
28839	\％	19－19－17	155	70	$8-7$	10－10	1－1	3－3	1 －1	$1+2+2-1+2+2$	
28840	¢	19－19－17	146	69	8 －7	9－10	1－1	3－3		$1+2-1+2$	7
28841	\％	19－19－17	157	73	7－8	10－10	1－1	3－3	1－1	$1+3+3-1+3+3$	7
28842	\％	19－19－17	158	80	8－8	9－10	1－1	3－3	1－1	$1+3-1+3$	7
28843	${ }^{\circ}$	19－19－17	159	84	7－7	8－9	1－1	3－3	1－1	$1+2+2-1+2+2$	7
28844	0°	19－19－17	158	83	8 －8	10－10	1－1	3－3	1 －1	$1+2+2-1+2+2$	7
28846	$\stackrel{+}{6}$	19－19－17	155	68	$7-7$ $8-8$	－9－9	${ }_{1}^{1-1}$	$3-3$ $3-3$	1 1－1	$1+2+2-1+2+2$	7
28847	\％	19－19－17	157	74	8 －7	10－9	1 －1	3－3	$1-1$	$1+2+3-1+2+3$	7
28848	\％	19－19－17	152	79	7－7	9－9	1－1	3－3	1－1	$1+2-1+2$	7
28849	\％	19－19－17	155	80	8－8	9－10	1－1	3－3	1－1	$1+2-1+2$	7
28850	${ }^{\circ}$	19－19－17	154	71 85	8 －8	10－10	1－1	3－3	$1-1$	$1+2+2-1+2+2$	7
28851	0^{7}	19－19－17	165	85	7－7	10－10	1－1	3－3	1－1	$1+2+1-1+2+1$	7
28853	${ }^{\circ}$	19－19－17	153	84	$7-7$ $8-8$	10－10	${ }_{2}^{1-1}$	$3-3$ $3-3$	${ }_{1-1}^{1}$	$1+2-1+2$	7
28854	\％	19－19－17	160	77	7 －7	10－10	1 －1	3－3	1 －1	$1+3+2-1+2+2$	7
28855	－	19－19－17	160	71	8－8	10－10	1－1	3－3	1－1	$2+2+2-1+1+3$	7
28856	\％	19－19－17	158	74	8 －8	10－10	1－1	3－3	1－1	$1+2+2-1+2+2$	7
28857 28858	8	19－19－17	158	77	7－7	10－10	$1-1$	3－3	$1-1$	$1+2+2-1+2+2$	7
28858 28859	$\stackrel{8}{\circ}$	退19－19－17	155 157	78 68 ＋	8－8 7	10－10	1 1－1	$3-3$ $3-3$	1－1	$1+2+2-1+2+3$	7
28860	O^{7}	19－19－17	160	${ }_{84}{ }^{8}+$	8－8	$\xrightarrow{10-10} 10$	${ }_{1-1}^{1-1}$	$3-3$ $3-3$	${ }_{1-1}^{1-1}$	$1+2-2+2$	7
28861	＋	19－19－17	156	${ }_{75}$＋	8－7	10－10	1－1	3－3	1－1	$1+2+1-1+2+1$	7
28862	\％	19－19－17	154	75	8－8	10－10	1－1	3－3	$1-1$	$1+2-1+2$	7
28863 28864	$\stackrel{\circ}{0}$	19－19－17	158	77 85	7－8	9－9	${ }_{1}^{1-1}$	$3-3$ $3-3$	1－1	$1+2+2-1+2+2$	7
28865	\％	$21-21-17$	161	72	8－8	$10-9$ $10-10$	${ }_{1-1}^{1-1}$	$3-3$ $3-2$	${ }_{1-1}^{1-1}$	$1+2+1-1+2+1$ $1+2+2-1+2+2$	7
28866	\bigcirc	19－19－17	151	74	8－8	10－10	1－1	3－3	1－1	$1+2+2-1+2+2$	7
28867	${ }^{7}$	19－19－17	166	86	8－8	10－10	1－1	3－3	1－1	$1+2+2-1+2+2$	7
28888 2889		19－19－17	156	67	8－8	10－10	1 －1	3－3	1 －1	$1+2+2-1+2+2$	7
28870	${ }^{\text {of }}$	19－19－17	154 160	${ }_{84}^{26}+$	8－8	10－10	$1-1$	3－3	$1-1$	$1+2+1-1+2+1$	7
28871	0^{7}	19－19－17	157	90	8－8	10－9	$1-1$	$3-3$ $3-3$	1 －1	$1+2+2-1+2+2$ $1+2+1-1+2+1$	7
28872	${ }^{\circ}$	19－19－17	165	81	8－8	10－10	2－2	3－3	1－1	$1+2+2-1+2+2$	7
28873	O^{7}	19－19－17	155	88	7－7	9－10	1－1	3－3	1－1	$1+2+2-1+2+2$	7
28874	\bigcirc	19－19－17	153	73	8－8	10－10	1－1	3－3	1－1	$1+2-1+2$	7
28875 28876	0°	19－19－17	156	82	8－8	10－10	1 －1	3－3	1 －1	$1+2+1-1+2+2$	7
28877	${ }_{0}$	19－21－17	157	$8_{87}^{9}+$	8－8	10－9	${ }_{1}^{1-1}$	$3-3$ $3-3$	${ }_{1-1}^{1-1}$	$1+2-2+2$ $1+2+2-1+2$	7
28878	\％	19－19－17	157	$42+$	8－8	10－9	2－1	3－3	1－1	$1+2-2-1+2$	7
28879	\bigcirc	19－${ }^{19}-17$	154	73	8－8	10－10	1－1	3－3	1－1	$1+2+2-1+2+2$	7
288880		19－19－17	150	83	7－7	9－10	1－1	3－3	1－1	$1+2+2-1+2+2$	
28881 28882	\％	19－19－17	157 157	72 71	$8-8$ $8-8$	$9-10$ $9-10$ $10-10$	1－1	$3-3$ $3-3$	1－1	$1+2+2-1+2+3$ $2+2+2-1+2+2$	7
28883	\％	19－19－17	157	74	7－7	10－10	1－1	3－3	1 －1	$1+3-2{ }^{1+2+2}$	7
28884	\bigcirc	19－21－17	156	71	8－8	10－10	1－1	3－3	1－1	$1+2-1+2$	7
28885		19－19－17	157	80	7－7	9－9	1－1	3－3	1－1	$1+2-1+2$	7
${ }_{28887}^{2888}$	${ }^{\circ}$	退19－19－17	149 158	74 57 57	8－8	$10-9$ $10-10$ 10	$1-1$	$3-2$ $3-3$	${ }_{1}^{1}$ 二 1	$1+2-1+2$	7
28888	σ^{\prime}	19－19－17	159	$28+$	7－8	$10-10$ $10-9$	1－1	$3-3$ $3-3$	${ }_{1}^{1}-1$	$1+2+1-1+2+1$ $1+2+2-1+2+2$	7
28889	\％	19－19－17	157	82	8－8	10－9	1－1	3－3	1－1	$1+2-1+2$	7
28890	${ }^{7}$	19－19－17	155	83	8－8	9－9	2－1	3－3	1－1	$1+2+2-1+2+2$	7
288891	0°	19－19－17	158	${ }_{73}^{71}+$	7－7	10－10	1－1	3－3	1 －1	$1+2+1-1+2+1$	7
28893	$\stackrel{8}{\circ}$	19－19－17	155 156	73 75	8－7	10－10	1－1	$3-3$ $3-3$	${ }_{1}^{1} \mathbf{1} 1$	$1+2+2-1+2+2$	7
28976	0^{7}	19－19－17	159	82	8－8	10－10	1－1	3－3	1－1	$1+2+2-1+2+2$	6
28977 28978	\％	19－19－17	160	73	8－8	10－10	1－1	3－3	1－1	$1+2-1+2$	6
28979	${ }^{\circ}$	退19－19－17 $19-17$	155 162	84 84	8－8	$10-10$ $10-10$	${ }_{1-1}$	$3-3$ $3-3$	${ }_{1-1}$	$1+2+2-1+2+2$ ．	6

Scale counts in Thamnophis ordinoides atratus-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	$\begin{aligned} & \text { Local- } \\ & \text { ity } \end{aligned}$
C2366	\%	19-19-17	161	77	8-8	9-9	1-1	$3-3$	1-1	$1+2+2-1+2+2$	8
C2368	0^{7}	19-19-17	154	79	8-8	9-10	$1-1$	3-3	$1-1$	$1+2+2-1+2+2$	8
S4228	\%	19-19-17-15	153	75c	8 -8	10-10	1-1	3-3	1-1	$1+3-1+2$	9
S4221	0	19-19-17-15	155	77 c	7-8	10-10	1-1	3-3	$1-1$	$1+2-1+2$	10
S4242	0^{7}	19-19-17-17	159	79c	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	10
S4243	\%	19-19-17-15	150	74 c	8-8	10-10	1-1	4-4	1-1	$1+2-1+2$	10
S4313	0^{7}	20-21-19-17	170	91 c	8-8	10-10	1 -1	4-3	1-1	$1+2-1+2$	11
S4434	¢	$21-19-17-17$	166	$38+$	8 -8	10-10	1-1	$3-3$	1-1	$2-2$	11
C1165	0^{7}	19-19-17	161	65	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	12
C1166	0^{7}	19-19-17	157	75	8-8	9-9	$1-1$	$3-3$	1-1	$1+2+3-1+2+3$	12
S1795	O^{7}	19-19-17-15	158	85 c	8 -8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	13
C5323	0^{7}	19-19-17	163	83	8 -8	10-10	1-1	3-3	1 -1	$1+2+3-1+3+3$	14
S4240	\%	$19-19-17-17$	145	71 c	$8-8$	10-10	1-1	3-3	1-1	$1+2-1+2$	15
C1163	0^{7}	19-19-17	158	82	8 -8	10-10	1-1	4-3	1-1	$1+2+1-1+2+2$	16
C1167	0^{7}	19-19-17	161	82	$8-8$	10-10	1 -1	$3-3$	1-1	$1+2-1+2$	16
C1168	\%	19-19-17	154	73	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	16
S1760	\%	19-19-17-17	149	79 c	$8-8$	10-8	1-1	3-3	1 -1	$1+2-1+2$	16
28620	0^{7}	19-19-17	152	$6+$	7 -7	8-9	1-1	$3-3$	1 -1	$1+2+2-1+2+2$	17
C5315	0^{7}	19-21-17	153	$54+$	7-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	17
C5317	\%	19-19-17	151	75	8 -8	$9-10$	$1-1$	3-3	$1-1$	$1+2+2-1+3+3$	17
S4247	0^{7}	$19-21-19-17$	155	80 c	8 -8	10-10	1-1	$3-3$	1-1	$1+2-1+3$	18
S4248	0^{7}	19-19-17-15	161	82 c	8 -8	10-10	1-1	$3-3$	1 -1	$1+2-1+2$	18
34249	\%	19-19-17-15	144	71 c	8-8	10-8	1-1	$3-3$	$1-1$	$1+2-1+2$	19
28302	0^{7}	19-19-17	155	75	8-8	10-10	1-1	$3-3$	1-1	$1+3-1+2$	20
28303	0^{7}	19-19-17	158	85	8 -8	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	20
28304	$0^{\prime \prime}$	19-19-17	155	78	8 -7	9-9	1 -1	3-3	$1-1$	$1+2-\cdots 1+2$	20
28305	\%	19-19-17	149	76	8-8	9-10	$1-1$	3-3	1 -1	$1+2-1+2$	20
28306	0^{7}	19-19-17	160	89	8-8	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	20
28307	\%	21-21-17	151	$71+$	8 -8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	20
28308	0^{7}	19-19-17	152	83	8-8	9-9	1-1	3-3	1 -1	$1+2+1-1+2+2$	20
S4237	0^{7}	19-19-17-17	150	79c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	21
S4238	0^{7}	19-19-17-17	150	80 c	8 -8	10-10	$1-1$	3-3	1-1	$1+2-1+2$	21
S4233	0^{7}	19-19-17-17	161	85 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	22
S4234	\%	19-19-17-17	147	81 c	$9-9$	10-10	1-1	3-3	1-1	$1+2-1+3$	22
S4241	\%	19-19-17-17	145	74 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	23
S4250	0^{7}	19-19-17-17	153	78c	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	23
S4251	\%	19-19--17-17	143	73c	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	23
S4252	\%	19-19-17-17	144	77 c	8-8	10-10	1 -1	3-3	1-1	$1+3-1+1$	23
S4236	\%	19-19-17-17	148	73 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	24
S4244	\%	19-19-17-15	150	79c	8-8	10-10	1 -1	3-3	1-1	$1+3-1+3$	24
S4245	\%	19-19-17-15	147	73c	8-8	10-10	1-1	2-3	1-1	$1+2-1+2$	24
S4253	$\stackrel{+}{9}$	19-19-17-17	147	72 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	24
C5313	9	19-19-17	144	71	7 -7	9-8	1-1	3-3	1-1	$1+3-1+3$	25
C5314	$\stackrel{+}{9}$	19-19-17	150	62	8-8	9-10	1-1	3-3	1-1	$1+2+2-1+2+2$	25
S6440	0^{7}	19-19-17-17	163	85 c	7 -7	9-9	$1-1$	3-3	1-1	$1+2-1+2$	26
S4130	\%	19-19-17-17	155	78 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	26
C5301	9	19-19-17	152	73	8-8	10-10	1-1	3-3	1-1	$1+1-1+1$	27
C5302	8	19-19-17	151	77	8-8	10-10	1-1	3-3	1 -1	$1+2-1+2+2$	27
C5303	\%	19-19-17	155	$38+$	8-8	$9-9$	1-1	3-3	1-1	$1+2+2-1+2+2$	27
C5304	9	19-19-17	154	73	8-8	-10	1-1	3-3	1-1	$1+2+2-1+2+2$	27
C5305	9	19-19-17	156	$29+$	8-8	10-9	1-1	3-3	1-1	$1+2+3-1+2+3$	27
C5306	\%	19-19-17	148	71	8-8	10-10	2-2	3-3	1-1	$1+3+3-1+2+2$	27
C5307	0^{7}	19-19-17	153	78	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	27
C5308	9	19-19-17	150	61	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	+27
C5309	0^{7}	19-19-17	161	77	8-8	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	27
C5310	\%	19-19-17	156	73	8-8	10-10	1-1	4-4	1-1	$1+2+3-1+2+3$	27
C5311	\%	19-19-17	152	64	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	27
C5312	0^{4}	19-19-17	154	85	7-7	10-10	1 -1	3-3	1 -1	$1+2+2-1+3+2$.	27
C5336	\%	19-19-17	149	71	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	27
C5337	O^{7}	19-19-17	151	83	8-8	9-10	1-1	3-3	1-1	$1+2+2-1+2+2$	27
C5338	\%	19-19-17	140	65	8-8	10-10	1-1	3-3	1 -1	$1+2-1+2$	27
S4131	${ }^{\prime}$	19-19-17-17	166	84 c	8-8	10-10	1-1	3-3	$1-1$	$1+2-1+3$	28
C4005	\%	19-19-17	162	75	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	29
S4219	¢ ?	19-19-17-17	152	$9+$	8-8	9-9	1 -1	3-3	1-1	$1+3-1+2$	30
S4229	${ }^{\circ}$	$19-19-17-15$	164	82 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	30
S4230	$0^{\text {a }}$	19-19-17-17	159	90c	7-8	10-10	1-1	3-3	1-1	$1+2-1+2$	30
S4231	-	19-19-17-17	152	73c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	30
S4256	\%	19-19-19-17	150	76 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	31
S4257	\%	19-19-17-15	154	72c	8-8	10-11	1-1	3-3	1-1	$1+2-1+2$	31
S4258	\%	19-19-17-17	143	72 c	8-8	10-10	1-1	3-3	1 -1	$1+2-1+2$	32
28019	\%	19-19-17	152	73	8 -8	10-10	1-1	$2-2$	1-1	$1+1-1+1$	32
28020	\%	19-19-17	155	78	8 -8	9-9	1-1	$3-3$	1 -1	$1+2-1+2$	32
28021	0^{7}	19-19-17	159	93	8-8	10-10	1-1	3-3	1-1	$1+3-1+2+2$	32
28024	\%	19-19-17	152	$72+$	8 -8	10-10	1-1	3-3	1-1	$1+2+2-1+2$	32
28025	0^{7}	19-19-15	161	87	8-8	10-10	1-1	? -?	1-1	$1+1-1+2$	32

Scale counts in Thamnophis ordinoides atratus-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infra- labials	Preoculars	Postoculars	Loreals	Temporals	Locality
28029	0^{7}	19-19-17	164	88	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	32
C5298	\%	21-21-17	158	$54+$	8-8	10-10	1-1	3-4	1-1	$1+2+2-1+2+2$	33
C5299	\%	19-19-17	155	78	8-8	10-10	1-1	4-4	1-1	$1+2-1+2$	33
C5300	9	19-21-17	149	68	8-8	10--10	1-1	3-3	1-1	$1+2+2-1+2+2$	33
27938	0^{7}	19-19-17	162	$84+$	8-8	10-10	$1-1$	3-3	1-1	$1+2+2-1+2+2$	34
27939	\%	19-19-17	150	$24+$? -8	9-10	1-1	? -3	1-1	$1+2-1+2$	34
27940	0^{7}	19-19-17	159	82	8-8	10-10	$1-1$	3-3	1-1	$1+2+3-1+2+3$	34
27941	0^{7}	19-19-17	159	$49+$	8-8	10-10	$1-1$	3-3	1-1	$1+3+3-1+2+3$	34
28010	\bigcirc	19-19-17	145	$25+$	8-8	$10-10$	1-1	3-3	1-1	$1+2+2-1+2+2$	35
27982	0^{7}	19-19-17	159	82	8-8	$10-10$	1-1	3-3	1-1	$1+2+2-1+2+2$	36
C4913	9	19-19-17	150	75	8-8	10-10	2-2	3-3	1-1	$1+2+2-1+2$	37
C4914	0	19-19-17	154	83	8-8	10-9	1-1	$2-2$	1-1	$1+3-2+2$	37
S4323	0^{7}	19-19-17-17	158	87 c	7-8	9-9	1-1	3-3	$1-1$	$1+3-1+2$	37
C5295	0^{7}	19-19-17	165	71	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	38
C5296	${ }^{7}$	19-19-17	161	77	8-8	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	38
C5297	0^{7}	19-19-17	165	79	8-8	9-10	1-1	4-4	1-1	$1+2+2-1+2+2$	38
S6310	0^{7}	19-19-17-17	157	88 c	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	39
S6311	9	19-19-17-17	154	76 c	8-8	9-10	1-1	3-3	1-1	$1+3-1+3$	39
S6312	\%	19-19-19-17	152	74c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	39
S6313	0^{7}	19-19-17-17	164	82c	8-8	10-9	1-1	3-3	1-1	$1+2-1+2$	39
S6314	0^{7}	19-19-17-17	156	$80+$	$8-8$	10-10	1-1	4-3	1-1	$1+1-1+1$	39
13178	0^{7}	$19-21-17$	160	84	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	40
C4006	\%	19-19-17	154	$27+$	8-8	10-10	1-1	3-4	1-1	$1+2-1+2$	41
C4007	9	19-19-17	154	79	8-8	10-9	1-1	3-3	1-1	$1+3-1+2$	41
C4008	0	19-19-17	160	81	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	41
C5290	07	19-19-17	159	$60+$	8-8	9-9	1-1	3-2	1-1	$1+2+3-1+2+3$	42
C5292	0^{7}	19-19-17	165	64	8-8	10-9	1-1	3-3	1-1	$1+2+3-1+2+3$	42
C5293	\bigcirc	19-19-17	153	69	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	42
C5287	\bigcirc	19-19-17	157	81	8-8	10-10	$2-2$	3-3	1-1	$1+2+2-1+2+2$	43
C5288	0°	19-19-17	155	79	8-8	9-9	1-1	3-3	1-1	$1+2+3-1+2+3$	43
C5291	\bigcirc	21-21-17	153	71	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	43
27814	\%	19-19-17	151	74	8-8	10-10	$1-1$	4-3	1-1	$1+2+2-1+2+2$	44
27816	0^{7}	19-19-17	156	85	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	44
27817	0^{7}	19-19-17	158	89	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	44
27818	\%	$19-21-17$	159	$65+$	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	44
27819	¢	19-21-17	156	74	8-8	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	44
S5181	${ }^{7}$	19-19-17-17	160	78 c	8-7	10-10	1-1	3-3	1-1	$1+2-1+2$	45
C2438	${ }^{\circ}$	19-19-17	167	$48+$	8-8	10-10	1-1	3-3	1-1	$1+2+1-1+2+2$	46
C4009	\bigcirc	19-19-17	148	80	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	47
C843	0^{7}	19-19-17	164	85	8-8	10-10	$2-2$	3-3	1-1	$1+2+2-1+2+2$	48
C844	\%	19-19-17	164	72	8-8	9-9	1-1	3-3	1-1	$1+2+2-1+3$	48
C845	0^{7}	19-19-17	171	88	8-8	10-10	1-1	$3-2$	1-1	$1+2+2-1+2+2$	48
C846	\bigcirc	21-21-17	161	72	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+3+2$	48
C1627	+	19-21-17	160	76	8-8	11-11	1-1	3-3	1-1	$1+2+2-1+2+2$	48
C1628	9	19-19-17	165	73	8-8	10-10	$1-1$	3-3	1-1	$1+2+2-1+2$	48
C1629	\%	19-19-17	152	80	8-8	10-11	1-1	3-3	1-1	$1+3-1+2$	48
C1630	0^{7}	19-19-17	172	89	8-8	10-10	1-1	3-3	1-1	$1+2+1-1+2+1$	48
C1634	\bigcirc	21-21-17	156	79	8-8	10--10	1-1	3-3	1-1	$1+2+3-1+2+3$	48
C2439	\%	19-21-17	164	74	8-8	10- 10	$2-3$	$3-3$	1-1	$1+2+2-1+2+2$	48
C2440	${ }^{7}$	19 19-17	170	90	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	48
C2441	¢	19-21-17	161	70	8-8	9-10	1-1	3-3	1-1	$1+2-1+3$	48
C2442	${ }^{\circ}$	19-19-17	168	86	8-7	$9-10$	1-1	3-3	1-1	$1+2+2-1+2+3$	48
C2443	0^{7}	19-21-17	164	80	8-8	10-10	1-1	$3-3$	1-1	$1+2+2-1+2+2$	48
C2444	\%	21-21-17	156	78	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	48
C2445	\bigcirc	19-21-17	161	$54+$	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+1+1$	48
C2446	\%	21-21-17	163	77	8-8	10-10	1-1	2-2	1-1	$1+3-1+3$	48
C2448	${ }^{7}$	19-19-17	169	72	8-8	10-10	1-1	3-3	1-1	$1+2+1-1+2+1$	48
C2449	0^{7}	19-19-17	166	86	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+2$	48
C2450	\%	21-21-17	155	73	8-8	10-10	$2-2$	3-3	1-1	$1+2+2-1+2+2$	48
C2451	\%	21-21-17	163	73	8-8	10--10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	48
C2452	0^{7}	19-21-17	167	73	8-8	10-10	$1-2$	3-3	1-1	$1+2+2-1+2+2$	48
C2453	\%	19-21-19-17	160	77	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	48
C2454	\bigcirc	$21-21-17$	161	73	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	48
C2455	0^{7}	19-19-17	164	85	$8-8$	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	48
C2456	${ }^{7}$	19-21-17	170	87	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	48
C2457	0^{7}	19-19-17	159	81	8-8	10-10	1-1	3-4	1-1	$1+2+2-1+2+2$	48
C2458	\bigcirc	19-19--17	165	78	8-8	10-10	$2-2$	3-3	1-1	$1+2+2-1+2+2$	48
C2459	8	19-19-17	168	$50+$	$8-8$	10-10	1-1	$2-2$	1-1	$1+3-1+3$	48
C2461	${ }^{\circ}$	$19-21-17$ $-19-17$	163	81	8-8	10-10	$1-1$	3-3	$1-1$	$1+3+3-1+2+3$	48
C 2462	0^{7}	19-19-17	152	74	8-8	10-10	$1-1$	3-3	1-1	$1+2+2-1+2+2$	48
C3757	+	19-19-17	148	78	8-8	10-10	1-1	$3-3$	1-1	$1+3-1+2$	48
C4314	\bigcirc	$21-21-17$	158	52	$8-7$	9-9	1-1	3-4	$1-1$	$1+2+2-1+2+2$	48
C5417	8	$19-21-17$	159	80	8-8	10-10	$2-2$	3-3	1-1	$1+2+2-1+2+2$	48
C5418	0^{7}	$19-21-17$	164	81	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	48
C5419	\%	$19-19-17$	159	78	8-8	10-10	1-1	$3-3$	$1-1$	$1+2+2-1+2+2$	48

Scule counis in Thrmnophis ordinoides atraius-Continued

Number	Sex	Scale rows	Gastrosteges	Uro- steges	Supralabials	Infra- labials	Preoculars	Postoculars	Loreals	Temporals	$\begin{gathered} \text { Local- } \\ \text { ity } \end{gathered}$
C5555	9	21-21-19-17	159	77 c	8-8	11-10	2-1	3-3	1-1	$1+3-1+3$	48
C2437	0^{7}	21-21-17	167	78	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	49
C2460	0^{7}	19-21-17	164	87	8-8	10-10	1-1	3-4	1-1	$1+3-1+2$	49
13223	0^{7}	21-21-17	165	79	8-8	9-9	1-1	2-2	1-1	$1+2+2-1+2+2$	50
C2436	0^{7}	19-19-17	153	81	8-8	9-9	1-1	3-3	1-1	$1+3-1+2+2$	50
S4161	7	19-19-17-15	148	74 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	51
39565	¢	19-21-19-17	157	73	8-8	10-10	2-1	3-3	1-1	$1+2+3-1+2+3$	52
39566	\bigcirc	19-21-19-17	153	72	8-8	10-10	1-1	3-4	1-1	$1+2-1+2$	52
27286	0^{7}	19-19-17	157	82	8-8	10-8	1-1	3-3	1-1	$1+2+2-1+2+2$	52
33350	¢	21-21-17	154	67	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	52
33351	0^{7}	21-19-17	153	80	8-8	9-9	1-1	3-3	1-1	$1+1+2-1+2+2$	52
33352	¢	19-19-17	157	75	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	52
33353	\%	19-19-17	159	78	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	52
33354	${ }^{7}$	21-21-17	158	76	8-8	10-10	1-1	3-3	1-1	$1+1+2-1+2+2$	52
33355	\%	21-21-17	155	69	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	52
33356	${ }^{7}$	19-19-17	162	82	8-8	9-10	1-1	3-3	1-1	$1+2+2-1+2+2$	52
38943	\%	21-21-17	152	$53+$	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	52
39200	+	19-21-17	155	$50+$	8-8	9-10	1-1	3-3	1-1	$1+2+3-1+2+3$	52
39557	\%	19-21-19-17	153	74	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
39558	${ }^{7}$	19-21-19-17	157	63	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
39559	\%	19-21-17-15	148	66	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
39560	0^{7}	19-21-17	154	78	8-8	9-9	1-1	3-3	1-1	$1+2-1+2$	52
13225	\%	21-19-17	159	76	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
13226		19-21-19-17	157	73	8-8	10-10	$2-2$	3-3	1-1	$1+2-1+2$	52
13227		19-19-17	157	68	7-8	$9-9$	1-1	3-3	1-1	$1+2-1+2$	52
13228		19-19-17	157	77	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
13229	.	19-19-17	157	70	8-8	10-10	$2-1$	3-3	1-1	$1+2-1+2$	52
13231		19-19-17	157	66	8-8	9-10	1-1	3-3	1-1	$1+2-1+2$	52
13235	?	19-19-17	157	70	8-8	9-9	1-1	3-3	1-1	$1+2-1+2$	52
13239	$0^{\prime \prime}$	19-19-17	161	$61+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
13247	\%	19-19-17	154	68	8-8	9-10	1-1	4-3	1-1	$1+2-1+2$	52
14498	\%	19-19-17	160	74	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
14499	0^{7}	19-19-17	163	83	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	52
14500	0^{7}	19-21-17	158	78	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	52
S.R. 22	0^{7}	19-19-17-17	164	93 c	7-7	10-10	1-1	3-3	1-1	$1+2-1+2$	53
S.R. 21	\%	19-19-17-17	150	70	8 -8	10-10	1-1	3-3	1-1	$1+2-1+1$	54
S1123	${ }^{\circ}$	19-19-17-17	149	79c	8-8	10-9	1-1	3-3	1-1	$1+2-1+2$	55
S1654	\%	19-19-17-17	146	69	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	55
S1655	¢	19-19-17-15	144	71 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	55
S4322	${ }^{\circ}$	19-19-17-15	146	77 c	8-8	9-9	1-1	3-2	1-1	$1+3-1+2$	56
S5180	\%	19-19-17-15	151	73 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	57
S5184	\%	19-19-17-15	143	66 c	8-8	10-10	1-1	3-3	1-1	$1+1-1+1$	58
S.R. 68	\%	19-19-17-17	150	74 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	59
S1198	\%	19-19-17-15	143	$59+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	59
S4149	${ }^{\circ}$	19-19-19-17	153	85c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	59
S4155	${ }^{7}$	17-19-17-15	155	86 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	59
S1136	9	19-21-19-17	152	68c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	60
S1137	${ }^{\circ}$	19-19-17-17	161	67 c	8-8	10-10	1-1	3-2	1-1	$1+2-1+2$	60
S1139	\%	19-21-19-17	158	$73+$	8-8	10-10	1-1	4-4	1-1	$1+2-1+2$	60
S1200	\%	19-19-17-15	145	$21+$	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	60
S1201	\%	19-19-17-17	148	71 c	8-8	10-10	2-2	3-3	1-1	$1+2-1+2$	60
S1202	\%	19-19-17-15	146	$38+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	60
S1203	${ }^{\circ}$	19-19-17-15	153	83 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	60
S1204	9	17-19-17-15	146	$70+$	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	60
S1205	\%	19-19-17-15	149	65c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	60
S1209	${ }^{\circ}$	21-21-19-17	167	$75+$	8-8	9-10	1-1	3-3	1-1	$1+2-1+3$	60
S1671	${ }^{\circ}$	19-21-17-17	163	80 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	60
S1672	${ }^{\circ}$	19-19-17-17	158	84 c	8 -8	10-10	1-1	3-3	1-1	$1+3-1+2$	60
S4154	${ }^{\circ}$	21-21-17-17	162	80 c	8-7	9-10	1-1	3-3	1-1	$1+2-1+3$	60
S5182	9	21-21-19-17	152	$71+$	8-8	$9-10$	1 -1	3-3	1-1	$1+2-1+2$	60
S5183	${ }^{\circ}$	19-19-17-17	154	82c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	60
S5185	\%	19-21-17-17	151	74 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	60
S.R. 7	${ }^{\circ}$	19-19-17-15	153	$43+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	61
S.R. 53	\%	19-21-17-17	163	73 c	8-8	10-10	1-1	$2-2$	1-1	$1+1-2+2$	61
S4101	?	19-19-17-15	165	$3+$	8-8	10-10	1-1	4-3	1-1	$1+2-1+2$	61
S4157	\%	19-19-17-15	147	$71+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	61
S4225	¢	19-21-19-17	162	71 c	8-8	10-10	1-1	3-3	1-1	$1+1-1+1$	61
S6378	\bigcirc	19-19-17-15	153	73c	8-7	10-10	1-1	$2-3$	1-1	$1+2-1+2$	61
S6380	${ }^{\circ}$	17-19-17-15	155	75 c 85	8 -8	10-10	$1-1$	$3-3$	1 -1	$1+2-1+2$	61
S.R. 69	${ }^{\circ}$	19-19-17-17	157	85 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	62
S.R. 64	0^{7}	19-19-17-15	155	80 c	9-8	10-11	1-1	3-3	$1-1$	$1+2-1+2$	63
S.R. 65		19-19-17-15	147	74 c	8 -7	10-10	1-1	$4-3$	1-1	$1+2-1+2$.	63
S.R. 66	${ }^{\circ}$	21-21-19-17	161	85 c	8 -8	10-10	1-1	3-3	1 -1	$1+2-1+2$	63
S.R. 67		19-19-17-15	154	82 c	8 8-8	10-10	1 -1	$3-3$ $4-3$	$1-1$	$1+2-1+2$	63
S4135	0^{7}	19-19-17-17	156	80c	8-8	10-10	1-1	4-3	1-1	$1+2-1+2$	63

Scale counts in Thamnophis ordinoides atratus-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Local ity
S1743	?	19-19-17-17	152	75 c	8-8	9-9	1-1	3-3	1-1	$1+2-1+3$	64
S1744	\%	19-21-19-17	162	77 c	8-8	10-10	1-1	3-4	1-1	$1+2-1+2$	64
S1745	\%	19-19-17-17	154	78 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	64
41661	0^{7}	19-19-17-15	164	79c	8-8	10-10	2-2	3-3	1-1	$1+2-1+2$	65
41662	${ }^{7}$	19-19-17-17	163	$58+$	8-8	10-10	2-1	3-3	1-1	$1+2-1+2$	65
41663	0^{7}	19-21-19-17	159	87 c	8-8	10-10	1-1	2-3	1-1	$1+2-1+3$	65
S4091	\%	19-19-17-17	156	75 c	8 -8	10-10	$2-2$	4-3	1-1	$1+2-1+2$	66
S6520	0^{7}	19-19-17-15	153	$23+$	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	67
S5852	0^{7}	19-19-17-15	161	$79+$	8-8	10-10	$1-1$	3-3	1-1	$1+2-1+2$	68
39653	\bigcirc	$19-19-17-17$	159	74 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	69
39652	\%	19-19-17-17	156	$36+$	8 -8	10-9	1-1	3-3	1-1	$1+2-1+2$	69
S1675	앙	19-19-17-15	150	71c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	70
S4150	0^{7}	$17-19-17-15$	151	79 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	70
S4151	¢	19-19-17-17	142	75 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	70
S4152	\%	19-19-17-15	147	74 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	70
S4153	\%	19-19-17-15	143	66 c	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	70
S.R. 71	\%	19-19-17-15	148	72c	8-8	10-9	1-1	3-3	1-1	$1+2-1+2$	71
S4186	\%	21-21-19-17	153	68 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	72
S1652	아	19-21-19-17	157	73c	8-7	10-10	1-1	3-3	1-1	$1+2-1+2$	73
S1674	\%	21-21-19-17	158	73c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	73
S1679	\%	$19-19-17-17$	149	72 c	8-8	10-10	1-1	4-4	1-1	$1+2-1+2$	73
S1774	\%	19-21-19-17	156	86 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	73
S4144	0^{7}	19-19-17-17	158	84 c	8 -8	10-10	1-1	$3-3$	1 -1	$1+2-1+2$	73
S4148	\bigcirc	19-19-17-17	147	73 c	8-8	11-10	1-1	3-3	1-1	$1+2-1+3$	73
S4319	\bigcirc	21-21-19-17	153	72 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	73
S4275	\bigcirc	19-21-19-17	156	67 c	8 -8	10-10	1-1	$3-2$	1-1	$1+3-1+3$	74
13764	0	19-19-17	149	76	8-8	9-10	1-1	3-3	1-1	$1+2-1+2$	75
13765	0^{7}	19-19-17	157	$59+$	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	75
S.R. 61	${ }^{7}$	19-21-19-17	154	$67+$	8 -8	9-9	1-1	3-3	1-1	$1+2-1+2$	76
S.R. 62		21-21-19-17	154	$66+$	8-8	9-9	1-1	1-2	1-1	$1+2-1+2$	76
S1682	${ }^{\circ}$	19-20-19-17	158	81 c	8 -8	10-10	$1-1$	$2-2$	1-1	$1+2-1+2$	76
S1685		19-19-17-17	146	64 c	8-8	10-10	1-1	$2-2$	1-1	$1+1-1+1$	76
S1696	0^{7}	21-21-17-17	156	$44+$	8-8	10-9	1-1	3-3	1-1	$1+2-1+3$	76
S5143	9	19-19-17-15	143	$67+$	8 -8	10-10	1-1	3-3	1-1	$1+1-1+1$	76
S5144	\%	19-19-17-17	153	62c	8-8	10-10	2-1	5-4	$1-1$	$1+2-1+2$	76
S5145	\%	$19-21-19-17$	155	67 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	76
S5146	\%	19-19-17-17	155	69 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	76
S5147	\%	19-19-17-17	140	$69+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	76
S5148	0^{7}	19-19-17-17	159	79 c	8 -8	10-10	1-1	3-3	1 -1	$1+2-1+2$	76
S5149	$\stackrel{+}{+}$	19-19-17-17	147	66 c	8 -8	10-10	1 -1	3-3	1-1	$1+2-1+2$	76
S5150	${ }^{7}$	$21-21-19-17$	154	$58+$	8 -8	10-10	1-1	$3-3$	$1-1$	$1+3-1+3$	76
13756 13757	0^{7}	$19-20-19-17$	160	67	$8-8$	10-9	1-1	3-3	1-1	$1+2-1+2$	77
13757 13758	$\stackrel{+}{8}$	$19-19-17$	145	66	7 -7	10-10	1 -1	3-3	1-1	$1+1-1+1$	77
13759	$\stackrel{+}{9}$	$19-21-17$ $19-19-17$	157	69 71	8-8	$10-10$ $10-10$	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$	77
13760	${ }^{+}$	19-19-17	154	71	8 -8	10-10	1 -1	3-3	1 -1	$1+2-1+2$	77
13761	0^{7}	19-19-17	153	$47+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	77
S4306	\%	19-19-17-15	150	73 c	$8-8$	11-11	1-1	3-3	1-1	$1+2-1+2$	78
S4307	0^{7}	19-19-17-17	152	75 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	78
S4308	\bigcirc	19-19-17-15	150	73 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	78
S4309	\%	19-19-17-15	151	71c	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	78
S4310	¢	19-19-17-15	144	67c	8-8	10-10	1-1	3-3	1-1	$1+1-1+1$	78
S4311	아	19-19-17-17	151	77 c	8 -8	10-10	1-1	3-3	1-1	$1+1-1+1$	78
S5193	0^{\prime}	21-21-17-17	159	74 c	8-8	10-10	1-1	$3-3$	1-1	$1+3-1+2$	79
S5194	¢	21-19-17-17	156	$21+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	80
S5191	\%	19-19-17-17	154	72 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	81
S5195	0^{7}	19-19-17-17	159	78 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	81
S5190	+	21-19-17-17	153	$40+$	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	82
43372	+	19-19-17-17	153	$61+$	8 -8	10-10	1 -1	3-3	1-1	$1+2-1+2$	83
43366	앙	$19-21-19-17$	155	67 c	8-8	10-10	1-1	3-3	1 -1	$1+2-1+2$	84
43367	0^{7}	19-19-17-17	163	81 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	84
C4317	0^{7}	19-21-17	159	82	8-8	10-10	1-1	3-3	1 -1	$1+2-1+2$	85

Remarks.-The large series at hand shows that this subspecies, which one of us formerly confused with T. o. clegans, and which Brown and Ruthven confused with T. o. ordinoides, really should be separated from both. From T. o. clegans it differs in the smaller average number of its scale-rows and ventral plates, as well as in coloration. The dorsal line usually is wider than in T. o. elegans and there often is more or less red in the coloration, which so far as we know is not the case in the mountain snakes.
T. o. atratus differs from T. o. ordinoides in being of larger size and in usually having a greater number of upper and lower labials, scale-rows, and gastrosteges. The coloration also is different, although a wide range in pattern and shade is to be seen in both subspecies, and both often show some red coloring.
As regards scale characters, T. o. atratus may be considered intermediate between T. o. ordinoides and T. o. elegans.
The two specimens from Siskiyou, Jackson County, Oregon, and two others (Nos. S4313 and S4434) from Anderson, Shasta County, California, probably might best be regarded as showing intergradation between this coast form and the T. o. elegans of the Sierra Nevada, since they all have twenty-one rows of scales and somewhat intermediate coloration. The material is inadequate to make this conclusion a positive one but it is in this region that one would expect to find these subspecies merging.

Five specimens (Nos. S4471, S4473, S4474, S4476, and S4479) from South Fork, Coquille River, twenty miles above Myrtle Point, Coos County, Oregon, are listed in this paper as T. o. biscutatus. They, however, are not typical of that form in that they have only nineteen rows of scales. They thus resemble T. o. atratus in this character and might well be regarded as intergrades. Additional specimens are needed from this general region. The coloration of these specimens is similar to that of T. o. couchiii in the indistinctness of the dorsal line and presence of dark pigmentation on the gastrosteges. Two specimens from Gasquet, Del Norte County, California, resemble these but are so puzzling that one (No. S4264) has been referred to T. o. biscutatus and the other (No. S4266) to T. o. atratus. Both have more than nineteen scale-rows, a
fairly large number of gastrosteges, and indistinct dorsal lines. More material is needed to clear up their status.

Certain specimens from Requa and Crescent City in Del Norte County, California, show intergradation between T. o. atratus and T. o. ordinoides. This is apparent in the reduction in the number of upper and lower labials, and, sometimes, of the gastrosteges. Some of the specimens from these localities are fairly typical T. o. atratus, and nearly all are closer to that form than to T. o. ordinoides. The scale-counts in these two series of specimens are given below. Nos. 29076 to 29091 are from Requa and Nos. 29219 to 29230 were collected at Crescent City.

It now is well known that variation in the coloration of the snakes of this subspecies is very great. Certain types of coloration may be pointed out as occurring in groups of specimens. The best known of these color types, perhaps, is that in which the general color is dark olive, lateral lines absent, dorsal line yellow and very broad, throat bright yellow, and belly deep olive or slate with or without a median yellow streak. This is the coloration of the types of this subspecies, which types Cope redescribed as Eutania infernalis vidua. It is not a common style of coloration in this subspecies since we find it more or less well marked in only Nos. SR.21, S1654, S1655, S4322, S5180, SR.68, S1198, S4149, S4155, S1200, S1201,

S1202, S1203, S1204, S5183, SR.7, S4157, S6378, S6380, SR.69, SR.64, SR.65, SR.67, S6520, S5852, S4151, S4152, S4153, and S4307, or in twenty-nine of three hundred and sixty-three specimens, or 8%. All of these specimens are from the San Francisco peninsula, that is to say, from San Mateo, Santa Clara, Santa Cruz, and Monterey counties. They, however, share this area with snakes of various other styles of coloration, and all sorts of intermediate specimens are to be found, so that this seems to be merely a peculiar color phase, although restricted geographically to a small portion of the range of the subspecies.

In certain specimens the dorsal line is lacking, or very faint or short. This is found most frequently in specimens from Humboldt and Mendocino counties.

Specimens from San Francisco and Marin counties usually may be recognized as such by their coloration, which is of a style not peculiar to these areas, but certainly most frequent there. There are three lines, the dorso-lateral region is largely red with dark spots, and the belly often is more or less suffused with bright brick red.

Perhaps the most frequent style of coloration is that which shows three light lines on a brown or olive ground, with the belly yellow or olive. But, as we have said, individual variation in color is enormous.

One specimen (No. C2452) contained a Bascanion vetustum. This is the only instance we recall of a snake having been eaten by Thamnophis.

Thamnophis ordinoides elegans (Baird \& Girard)

Mountain Garter-Snake.
Diagnosis.-Normally with eight supralabials; twenty-one, or sometimes nineteen, rows of scales; dorsal line very distinct, narrow; dorsal spots lacking or not evident, being hidden by the dark ground color, not invading the edges of the dorsal line; gastrosteges rarely marked with black or slate; preocular almost always single ; infralabials very rarely more than ten.

[^1]Synonyms.-Tropidonotus trivittatus Hallowell, 1853; type locality Cosumnes River, California. Eutcnia elegans brumnea Cope, 1892; type locality Fort Bidwell, California. Eutenia elegans lineolata Cope, 1892, (part) ; no type given.

Range.-Thamnophis ordinoides elegans, as here defined, is a mountain form which appears to be confined to the Sierra Nevada and San Bernardino mountains. In the Sierra Nevada it has been taken on both the east and west slopes. It seems not to occur at the lower levels.

We have examined specimens from the following locali-ties:-

1. Onion Valley, Inyo Co., California.
2. Oroville, Butte Co., Cal.
3. Strawberry Valley, Yuba Co., Cal.
4. Soda Springs Station, Placer Co., Cal. 6,500 feet.
5. Fyffe, El Dorado Co., Cal.
6. Tuolumne Meadows, Tuolumne Co., Cal.
7. Tuolumne Meadows, Yosemite National Park, Cal. at 8,600 feet.
8. Tamarack Flat, Mariposa Co., Cal.
9. Yosemite Valley, Mariposa Co., Cal.
10. Yosemite National Park, Cal., at 7,700 feet.
11. Kings River, Fresno Co., Cal., at 5,000 feet.
12. Sierra Nevada Mountains, Tulare Co., Cal.
13. Little Truckee River, Sierraville, Sierra Co., Cal.
14. Fallen Leaf Lake, El Dorado Co., Cal.
15. Lake Tahoe, El Dorado Co., Cal.
16. Tallac, El Dorado Co., Cal.
17. Glenbrook, Douglas Co., Nevada.
18. Farrington's, Mono Lake. Cal.
19. San Bernardino Mountains, San Bernardino Co., Cal.
20. West Fork Deep Creek, San Bernardino Co., Cal.

Of the specimens from the San Bernardino Mountains, number C761 is from Seven Oaks, altitude 5,000 feet; number C4316 is from Santa Ana Canyon, altitude 5,900 feet; number C758 is from the South Fork of the Santa Ana River, altitude 6,200 feet; numbers C759, C965 and C966 are from Fish Creek, altitude 6,500 feet; number C760 is from Bear Lake,
altitude 6,700 feet; and number C967 is from the south side of Sugar Loaf, altitude 6,700 feet.

Three of the specimens from Tulare County (Nos. C2810, C2811 and C2812) were collected at Jackass Meadow, at an altitude of 7,750 feet. The other specimen (C2813) was secured at Monache Meadow, altitude 8,000 feet.

Matcrial.-We have studied ninety-seven specimens from these localities.

Variation.-These specimens show the following variations:

The loreal is $1-1$ in all. The preoculars are $1-1$ in eightynine, or $93 \% ; 1-2$ in five, or 5%; and $2-2$ in two, or 2%. The postoculars are 3-3 in ninety-two, or 95%; 3-4 in four, or $4 \% ; 2-3$ in one, or 1%. The temporals are $1+2-1+2$ in seventy-one, or $75 \% ; 1+2-1+3$ in sixteen, or $17 \% ; 1+3-$ $1+3$ in seven, or 7%; and $1+1-1+1$ in one, or 1%. The supralabials are 8-8 in ninety-one, or $94 \% ; 7-8$ in two, or $2 \% ; 8-9$ in one, or $1 \% ; 9-9$ in one, or 1%; and $7-6$ in one, or 1%. The infralabials are $10-10$ in eighty-two, or 85%; $9-10$ in ten, or $10 \% ; 9-9$ in two, or $2 \% ; 8-10$ in one, or $1 \% ; 10-11$ in one, or 1%; and $11-11$ in one, or 1%. The scale-rows are 19-19-17 in twenty-two, or 23%; all the others (77%) have 21 rows of scales, but the formula varies, being 19-21-19-17 in thirty, 21-19-17 in seventeen, 21 $-21-17$ in twelve, $19-21-17$ in twelve, and $20-21-17$ in two. The gastrosteges vary from 151 to 179 , males having from 159 to 179 , females from 151 to 175 ; the average in fifty males is 171 , in forty-six females, 163.4. The urosteges vary from 70 to 101 , males having from 78 to 101 , females from 70 to 88 , the average in forty males is 86.4 , in thirty females, 78.5 .

This variation is shown in full in the following table of scale-counts.

Scale counts in Thamnophis ordinoides elegans

Number	Sex	Scale rows	Gastrosteges	$\begin{gathered} \text { Uro- } \\ \text { steges } \end{gathered}$	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	$\begin{aligned} & \text { Local. } \\ & \text { ity } \end{aligned}$
C3717	\bigcirc	19-19-17	166	$27+$	8-8	9-10	1-1	3-3	1 -1	$1+2-1+2$	1
${ }^{\text {C } 4002}$	${ }^{4}$	19-19-17	169	86 c	8-8	10-10	1-1	3-3	1 -1	$1+2-1+2$	2
${ }_{C}^{C 4003}$	O°	$21-21-17$ $19-19-17$	176 170 170	83 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	2
S6308	\%	19-21-19-17	170	86 c 85 c	8-888	${ }_{10-10}^{10}$	${ }^{1}{ }^{1} 1$	$3-3$ $3-3$	${ }_{1}^{1-1}$	$1+2-1+2$	3
C5345	${ }^{\circ}$	19-21-17		87 c	-88	10-10	$1-1$	3-3	${ }_{1-1}$	$\underline{1+3-1+2}$	4
S4370	${ }^{\circ}$	20-21-17-17	169	$84+$	8-8	10-10	1 -1	4-3	1 -1	1+2-1+2	5
S4371	-	19-21-17-17	157	73 c	8 -8	10-10	1-1	3-3	1-1	$1+3-1+2$	5
S1664	$\stackrel{\circ}{\circ}$	$\left\lvert\, \begin{aligned} & 19-19-17-17 \\ & 19-19-17-17\end{aligned}\right.$	170 174	$35+$	8-8	9-9	X-X	$3{ }^{3}-3$	$1-1$	$1+2-1+2$	6
${ }^{\text {C5907 }}$	O	19-19-17-17 ${ }^{19} 17$	174 172	89 c $64+$	$8-8$ $8-8$	10-10	${ }_{1}^{1}{ }^{1} 1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$	7
C5908	${ }^{\text {O}}$	19-19-17-17	173	$64+$ 908	$8-8$ $8-8$	$10-10$ $10-10$	${ }_{1}^{1-1}$	$3-3$ $3-3$	1-1	$1+2-1+2$	7
C5909	${ }^{7}$	19-19-17-17	176	91 c	8-8	10-10	${ }_{1-1}^{1-1}$	$3-3$ $3-3$	${ }_{1-1}$	$1+2-1+2$ $1+2-1+2$	7
C5910	\bigcirc	19-19-17-17	164	77 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	7
S4222	0°	19-21-19-17	167	85 c	8 -8	10-10	$1-1$	3-3	1-1	$1+2-1+2$	8
S1689	${ }^{-1}$	19-19-17-17	170	90 c	8-8	10-10	1 -1	3-3	1 -1	$1+2-1+2$	9
${ }^{\text {C6087 }}$	$\stackrel{8}{7}$	19-19-17-17	167	70 c	8-8	10-10	$1-1$	3-3	1 -1	$1+2-1+2$	10
${ }_{C}^{C 6266}$	${ }^{-1}$	19-19-17-17	174 179	87c	$7-8$ $8-8$	$8-10$	1 -1	4-3 3	1 -1	$1+2-1+2$	11
C6268	${ }^{7}$	19-19-17-17	174	${ }^{101 \mathrm{c}} 8$	8-8	$10-10$ $10-10$	1 -1	$3-3$ $3-3$	1 1-1	$1+2-1+2$	11
C6269	${ }^{7}$	19-19-17-17	163	88 c	8 -8	-	${ }_{1-1}^{1}$	$3-3$ $3-3$	1-1	$1+2-1+2$ $1+2-1+2$	${ }_{11}^{11}$
C6270	${ }^{\circ}$	19-19-17-17	173	87 c	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	11
C6271	0^{7}	19-21-19-17	170	92 c	8-8	10-10	1 -1	3-3	$1-1$	$1+2-1+2$	11
C6272	$\stackrel{\circ}{\circ}$	19-21-19-17	168	83 c	8-8	10-10	$1-1$	3-3	$1-1$	$1+2-1+2$	11
C6273	\%	19-21-19-17	165	$76+$	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	11
${ }^{\text {C6274 }}$	${ }^{\circ}$	19-19-17-17	177	90 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	11
C6275		19-19-17-17	179	81 c	8 -8	10-10	$1-1$	3-3	1-1	$1+2-1+2$	11
$\mathrm{C}^{\mathrm{C} 2810}$	\%	19-21-17	174 168	84 c 84 c	8-8	10-10	1 -1	$3-3$ $3-3$	$1-1$	$1+2-1+2$	12
C^{2812}	\%	21 -21-17	167	$84 c$ 74 c	8-8	$9-10$ $10-10$	${ }_{1}^{1-1}$	3-3	${ }_{1}^{1-1}$	$1+2-1+2$ $1+2-1+2$	12
C^{2813}	0^{7}	19-21-17	168	88 c	8-8	10-10	1 -1	3-3	$1-1$	$1+2-1+2$	12
S6305	\bigcirc	21-21-19-17	168	88 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	13
S5312 S 6546	${ }_{0}$	19-19-19-17	178	${ }_{78}^{56}+$	$8-8$ $9-9$	10-10	$1-1$	3-3	1 -1	$1+2-1+2$	14
S6531	\%	$21-21-19-17$ $19-21-19-17$	168	78 c 80 c	9-9	10-10	$1{ }^{1}$	$3-3$	1 -1	$1+2-1+2$	15
S6533	\%	19-21-19-17	167	78 c	8-8	10-10	1 1-1	$3-3$ $3-3$	${ }_{1}^{1-1}$	$1+2-1+2$ $1+2-1+2$	16
S6534	\%	19-21-19-17	164	85 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	16
S6535	\bigcirc	19-21-19-17	164	85 c	8 -8	10-10	1-1	3-3	$1-1$	$1+2-1+2$	16
S6536	\bigcirc	19-21-19-17	169	$89+$	8 -8	9-10	1-1	3-3	1-1	$1+2-1+2$	16
S6537 S6538	${ }_{0}{ }^{\circ}$	19-21-19-17	172	$59+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	16
S6540	$\stackrel{+}{+}$	19-21-19-17	169	${ }_{78 \mathrm{c}}^{66}$	$8-8$ $8-8$	10-10	${ }_{1}^{1-1}$	$3-3$ $3-3$	1 -1	$1+2-1+3$	16
S6547	0^{*}	19-21-19-17	171	88 c	8 8-8	10-10	${ }_{1}^{1-1}$	$3-3$ $3-3$	${ }_{1}$	$1+2-1+2$	16
S6549	\bigcirc	19-21-19-17	164	$75+$	8-8	10-10	1-1	3-3	$1-1$	$1+2-1+3$	16
S6550	${ }^{\circ}$	19-21-19-17	170	82 c	8 -8	10-10	1-1	3-3	$1-1$	$1+2-1+2$	16
S6555	${ }^{1}$	19-21-19-17	170 166	${ }^{89 \mathrm{c}} 42+$	8-8 8	$10-10$ $10-10$	1-1	$3-3$ $3-3$	1 -1	$1+2=1+2$	16
S6556	9	19-21-19-17	164	${ }_{82 \mathrm{c}}^{42}$	8-8	$10-10$ $10-10$	${ }_{1-1}^{1-1}$	$3-3$ $3-3$	${ }_{1-1}$	$1+2-1+2$ $1+2-1+2$	16
S6557	c^{7}	19-21-19-17	175	95 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	16
S6562	$\stackrel{\circ}{\circ}$	19-21-19-17	163	$88+$	8 8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	16
-	$\stackrel{8}{8}$	19-21-19-17	163	82 c	8-8	9-10	$1-1$	3-3	1 -1	$1+2-1+2$	16
38000	\%	19-21-19-17	173	${ }_{87 \mathrm{c}}^{69}$	8-9	10-10	1-1	$3-3$ $3-3$	1 -1	$1+2-1+2$	16
38001	O^{4}	19-21-19-17	168	$54+$	8-8	10-9	$\stackrel{1-1}{1-1}$	$3-3$ $3-3$	$1-1$	$1+2-1+2$ $1+2-1+2$	17
38002	?	19-21-19-17	166	84 c	8-8	10-10	$1-1$	2 2-3	${ }_{1}^{1-1}$	$1+1-1+1$	17
C6084	\bigcirc	19-21-19-17	165	83 c	8 -8	10-10	1-1	3-3	1 -1	$1+2-1+2$	18
S4379	${ }^{7}$	19-21-17-17	165	85 c	8-8	10-10	1 -1	3-3	1-1	$1+2-1+2$	19
S4380	${ }^{\circ}$	19-19-17-17	162	85 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
${ }_{\text {S }}$	8	$21-21-19-17$ $19-19-19-17$	159	72 c	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
S4383	8	19-21-19-17	162	${ }_{72 \mathrm{c}}^{72 \mathrm{c}}$	$8-8$ $8-8$	${ }_{10-10}^{10-9}$	${ }_{1}^{1-1}$	$3-3$ $3-3$	${ }_{1}^{1-1}$	$1+2-1+2$ $1+2$ -	19
S4384	${ }^{7}$	19-21-17-17	161	84 c	8-8	10-9	1 -1	3-3	1 -1	$1+3-1+2$	19
S4385	${ }^{1}$	19-21-17-17	170	$80+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
-	$\stackrel{+}{8}$	${ }_{19-21-17-17}^{19-21-19-17}$	165	76 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	19
S4388	$\stackrel{+}{6}$	$19-21-19-17$ $19-21-17-17$	158	72 c $69+$	$8-8$ $8-8$	10-10	$1-1$	$3-3$ $3-3$	1 -1	$1+2-1+2$	19
S4389	${ }^{*}$	19-21-17-17	166	${ }_{88 \mathrm{c}}{ }^{+}$	8-8	10-10	${ }_{1-1}^{1-1}$	$3-3$ $3-3$	$1-1$ $1-1$	$1+2-1+2$ $1+2-1+2$	19
S5218	${ }^{7}$	$21-21-19-17$	161	84 c	8 -8	10-10	1-1	3-4	1-1	$1+2-1+2$	19
-	${ }_{\circ}$	$21-21-19-17$ $21-21-19-17$	159	$75+$	8 -7	9-9	2-2	3-3	1-1	$1+3-1+2$	19
S5221	${ }^{\text {O }}$	$21-21-19-17$ $21-21-19-17$	156	${ }_{83 \mathrm{c}}^{72+}$	8-8	10-10	1 -1	3-3	1 -1	$1+2-1+2$	19
S5222	${ }^{\circ}$	21-21-19-17	166	888 c	8-8	10-10	${ }_{1}{ }^{1}-1$	3-3	${ }_{1-1}^{1-1}$	$1+2-1+2$ $1+2-1+2$	19
${ }^{\text {S }} 5223$	${ }^{\circ}$	$21-21-19-17$	169	$84+$	8 -8	10-10	1-1	3-3	1 -1	$1+3-1+2$	19
-		$21-21-19-17$	162	$86+$	8 -8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
	σ	21-21-19-17	168	$80+$	8-8	10-10	2-2	3-3	1-1	$1+2-1+2$	19

Scale counts in Thamnophis ordinoides elegans-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
S5226	0^{7}	21-21-19-17	161	78 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
S5227	$0^{\prime \prime}$	21-21-19-17	168	$86+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
S5228	\%	19-21-19-17	160	$33+$	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	19
S5229	\%	21-21-19-17	151	$61+$	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	19
S5230	8	21-21-19-17	153	73 c	8-8	10-10	$1-1$	3-3	1-1	$1+2-1+2$	19
S5231	0^{7}	$21-21-19-17$	164	84 c	8 -8	10-10	1-2	3-3	1-1	$1+3-1+2$	19
S5232	\%	$21-21-19-17$	155	74 c	8 -8	10-10	1-1	3-4	1-1	$1+2-1+2$	19
C710	0^{7}	$21-21-17$	166	84 c	8-8	10-10	1-1	3-3	1 -1	$1+3-1+3$	19
C711	$\%$	20-21-17	159	73 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	19
C712	${ }^{\circ}$	21-21-17	163	85 c	8-8	10-10	1-1	3-3	1 -1	$1+3-1+3$	19
C713	\%	$21-21-17$	159	83 c	8-8	10-10	1-2	3-3	1-1	$1+2-1+2$	19
C758	0^{7}	19-21-17	168	85 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
C759	\bigcirc	21-21-17	175	88 c	8-8	10-10	1-2	3-3	1-1	$1+3-1+2$	19
C760	\%	$21-21-17$	157	78 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
C761	9	$21-21-17$	161	73c	8 -8	10-10	1-1	3-3	1-1	$1+3-1+3$	19
C965	0^{7}	$19-21-17$	169	86 c	8-8	10-9	2-1	3-3	1-1	$1+3-1+3$	19
C966	\bigcirc	19-21-17	164	82 c	8 -8	10-10	1-1	3-3	1-1	$1+3-1+2$	19
C967	0°	$21-21-17$	164	83 c	$8-8$	10-10	1-1	3-3	1-1	$1+2-1+2$	19
C968	8	19-21-17	164 159	$70+$	8-8	10-10	1-1	$3-3$ $3-3$	$1-1$	$1+2-1+2$	19
C969 C 4316	$\stackrel{8}{8}$	$21-21-17$	159 164	$29+$ 82 c	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	19
C4316 S 5166	\% ${ }^{8}$	21-21-17	164 165	82 c $50+$	$8-8$ $8-8$	$10-10$ $10-10$	$1-1$	$3-3$ $3-3$	$1-1$	$1+2-1+2$	19
S5166	\%	21-?-17	165	$50+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	20

Remarks.-Thamnophis ordinoides elegans is a dark, distinctly striped form with no, or but little, evident spotting, and usually without dark pigmentation of the gastrosteges. It is closely related to T. o. vagrans and to T. o. couchii, agrees closely with both in most scale characters, and, at certain points, intergrades with both. Thus, some of the specimens from the Warner Mountains, Modoc County, California, approach the elegans type of coloration in varying degrees, while others are fairly typical of vagrans, under which heading they are listed. Apparently the type of Cope's Eutania elegans brunnea from Fort Bidwell, Modoc County, was such an intermediate specimen. Certain specimens from the Yosemite Valley, Kings River, and Jackass Meadow, are more or less intermediate between T. o. elcgans and T. o. couchii. A few of the specimens from the east slope of the Sierra Nevada also seem to be intergrades. However, the snakes from the higher altitudes in the Sierra Nevada seem to be constantly true to type. Those from the San Bernardino Mountains also show no departure from this type, although their range is in part overlapped by that of T. o. hammondii. No one could question the validity of this race as it occurs in these southern mountains, and the fact that intergrades between it and other races occur in the more northern portion of its range should not cause us to refuse it recognition.

We formerly confused this form and the striped race from the coast of California, describing both as T. elegans. Although they are rather similar in appearance, they differ in a number of respects. The mountain form usually has twentyone rows of scales, while the coast subspecies usually has nineteen. The average number of gastrosteges in T. o. elegans also is greater, the dorsal line is narrower, and we have never seen any red in the coloration of T. o. elegans. Just where and how these two forms meet has yet to be worked out. So far as we now know the one is confined to the interior mountains and the other to the coast region. Between them lies the area occupied by T. o. couchii in the north and T. o. hammondii in the south. T. o. couchii and T. o. hammondii are mainly to be found in the Lower and Upper Sonoran zones while the striped snakes are more characteristic of the cooler zones of the mountains and coast.

Thamnophis ordinoides vagrans (Baird \& Girard)

Wandering Garter-Snake.
Diagnosis.-Normally with eight supralabials; twenty-one rows of scales; dorsal line distinct; ground color light with distinct dorsal spots which invade the edges of the dorsal line; gastrosteges marked with black or slate along their anterior edges and medially; preocular single.

Type Locality.-California.
Synonyms.-This race seems to have served as the basis of no other names.

Range.-This subspecies, in typical form, is found over eastern Washington and Oregon, ranging thence east across Idaho to Utah, south across Nevada to eastern California in the vicinity of Mono Lake, and to northern Arizona, where it has been taken at Oak Creek, Fort Verde, Fort Whipple, San Francisco Mountains, Mineral Spring and Prescott. Typical specimens are at hand also from the San Pedro Martir Mountains in northern Lower California, Mexico.

Thamnophis ordinoides zagrans, Wandering Garter-Snake:-Photograph from living specimen collected in Provo Canyon, Wasatch Mountains, Wasatch County. Utah, in June, 1913.

We have examined specimens from the following localities :-

1. Diamond Lake, Stevens Co., Washington.
2. Prescott, Walla Walla Co., Wash.
3. Wallula, Walla Walla Co., Wash.
4. Humpeg Falls, Columbia Co., Wash.
5. Buck Creek, Lake Co., Oregon.
6. Bridge Creek, Lake Co., Ore.
7. Silver Creek, Harney Co., Ore.
8. Burns, Silvies River, Harney Co., Ore.
9. Umatilla, Umatilla Co., Ore.
10. Wallowa, Wallowa Co., Ore.
11. Mono Lake, Mono Co., California.
12. Walker Lake, Mono Co., Cal.
13. Winnemucca Lake, Washoe Co., Nevada.
14. Pine Forest Mountains, Humboldt Co., Nev.
15. Quinn River Crossing, Humboldt Co., Nev., at 4,100 feet.
16. Virgin Valley, Humboldt Co., Nev.
17. Smoky Valley, Nye Co., Nev. 20 miles north of Round Mountain.
18. Near Palisade, Eureka Co., Nev.
19. Elko, Elko Co., Nev.
20. Blue Lake, Twin Falls Co., Idaho.
21. Wardner, Shoshone Co., Idaho.
22. Potlatch Creek, 2 miles above mouth, near Lewiston, Nez Perce Co., Idaho.
23. Clearwater River, 7 miles above Lewiston, Nez Perce Co., Idaho.
24. Weiser, Washington Co., Idaho.
25. Boise, Ada Co., Idaho.
26. Payette Lake, Boise Co., Idaho.
27. Near head of Malad River Canyon, Blaine Co., Idaho.
28. Near Ketcham, Blaine Co., Idaho.
29. Guyer Hot Springs, Blaine Co., Idaho.
30. Near Shoshone Falls, Lincoln Co., Idaho.
31. Plains south side Snake River near Salmon Falls, Twin Falls Co., Idaho.
32. Cottonwood Creek, Cassia Co., Idaho.
33. Arco, Blaine Co., Idaho.
34. Fort Hall, Bingham Co., Idaho.
35. Bear River, Logan, Cache Co., Utah.
36. Woods Cross, Morgan Co., Utah.
37. Oak Creek, Coconino Co., Arizona.
38. San Pedro Martir Mountains, Lower California, Mexico.

Material.-One hundred specimens have been included in the present study.

Variation.-The variations shown by these specimens are as follows:

The loreal is $1-1$ in all specimens. Preoculars $1-1$ in eighty-one, or $81 \% ; 2-2$ in thirteen, or $13 \% ; 1-2$ in five, or 5%; and $2-3$ in one, or 1%. Postoculars are 3-3 in eightyeight, or $88 \% ; 2-3$ in four, or 4%; 3-4 in four, or 4%; 4-4 in three, or 3%; and $2-2$ in one, or 1%. Temporals are $1+2$ $-1+2$ in sixty-seven, or $67 \% ; 1+2-1+3$ in twenty, or 20%; and $1+3-1+3$ in thirteen, or 13%. The supralabials are 8-8 in eighty-nine, or 89%; 7-8 in eight, or 8%; and 7-7 in three, or 3%. The infralabials are $10-10$ in eighty-six, or $86 \% ; 9-10$ in seven, or $7 \% ; 10-11$ in four, or $4 \% ; 9-8$ in one, or 1%; and $11-11$ in one, or 1%. The scale-rows are $21-21-17$ in fifty-five, or $55 \% ; 21-19-17$ in thirty-three, or 33%; 19-21-19-17 in four, or 4%; 19-21-17 in three, or $3 \% ; 19-19-17$ in one, or $1 \% ; 20-21-19-17$ in one, or 1%; and $20-21-17-17$ in one, or 1%. The gastrosteges vary in number from 148 to 182, males having from 159 to 182 , females from 148 to 177 ; the average in fifty-three males is 174.2 , in forty-seven females, 169. The urosteges vary from 67 to 95 , males having from 79 to 95 , females from 67 to 83 ; the average in forty-four males is 86 , in thirty-five females, 76.

This variation is shown in full in the following table of scale-counts.

Scale counts in Thamnophis ordinoides vagrans

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	$\begin{aligned} & \text { Infra- } \\ & \text { labials } \end{aligned}$	Preoculars	Postoculars	Loreals	Temporals	$\begin{aligned} & \text { Local- } \\ & \text { ity } \end{aligned}$
S2664	8	19-21-19-17	163	74 c	-8		1-1	3-3	1-1	$1+2-1+2$	1
C5584	0	21-21-19-17	174	84 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	2
C5583	0^{7}	21-21-19-17	173	89c	$7-7$	10-10	1-1	3-3	1-1	$1+2-1+2$	3
C5582	\%	$21-21-19-17$	172	83c	$7-7$	10-10	1-1	4-3	1-1	$1+2-1+2$	3
C5585	0^{7}	$21-21-19-17$	166	85c	$7-8$	10-10	$2-2$	3-3	1-1	$1+2-1+2$	4
S6317	8	$21-21-17-17$	172	77 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	5
S5261	0^{7}	$21-21-X-X$	X	X	8-8	10-9	$2-2$	3-3	1-1	$1+3-1+3$	6
S6502	\bigcirc	21-21-X-17	170	$71+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	6
S6503	0^{7}	21-21-17-17	179	85 c	8-7	10-10	1-1	3-3	1-1	$1+2-1+2$	6
S6504	\%	21-21-17-17	172	74 c	8-8	10-10	2-1	3-3	1-1	$1+2-1+3$	6
S5234	0^{7}	21-21-17-17	176	90 c	8-8	9-8	$2-2$	3-3	1-1	$1+2-1+2$	7
S6316	$\%$	$21-21-17-17$	172	$70+$	8-7	$9-10$	1-1	2-3	1-1	$1+2-1+2$	8
S1660	\%	$21-21-19-17$	166	76 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	9
S4063	\%	19-21-17-17	164	76 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	10
C6085	8	21-21-19-17	166	76c	8-8	$9-10$	1-1	$3-3$	1-1	$1+2-1+2$	11
C6086	0^{7}	19-19-17-17	175	79c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	11
C6083	0^{7}	19--21-19-17	174	92c	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	11
C5958	\%	$21-21-19-17$	162	$52+$	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	12
S6525	8	21-21-19-17	166	74 c	8-8	11-11	1-1	3-3	1-1	$1+2-1+2$	13
C1520	8	21-21-17	176	$55+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	14
C1521	0^{7}	21-21-17	178	$27+$	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	14
C1522	0^{7}	21-21-17	182	81 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	14
C1523	\%	21-21-17	173	82c	8-8	10-10	$3-2$	3-3	1-1	$1+2-1+2$	14
C1524	0^{7}	21-21-17	177	86 c	8-8	10-10	2-2	3-3	1-1	$1+2-1+2$	14
C1525	0^{7}	21-21-17	180	93c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	14
C1517	${ }^{\circ}$	21-21-17	178	82 c	8-8	10-10	2-2	3-3	1-1	$1+2-1+2$	15
C1518	0^{7}	21-21-17	179	80 c	8-8	10-10	$2-2$	4-3	1-1	$1+2-1+2$	15
C1519	$0^{\prime \prime}$	19-21-17	178	85 c	8-8	10-10	2-2	4-4	1-1	$1+2-1+2$	15
C1526	\%	21-21-17	176	72c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	15
C1527	\%	21-21-17	171	72 c	$7-8$	10-10	1-1	3-3	1-1	$1+3-1+3$	15
C1271	$\%$	21-21-17	174	81c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	16
47995	\%	21-19-17	166	$68+$	8-8	10-10	1-1	2-2	1-1	$1+3-1+2$	17
S6530	\%	21-21-19-17	177	$77+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	18
S6558	8	$21-21-19-17$	175	83 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	18
S6559	0^{7}	$21-21-21-17$	174	$73+$	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+3$	18
S6565	$\%$	20-21-19-17	173	$58+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	18
S6566	\%	$21-21-19-17$	171	80 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	18
S6567	\%	21-21-19-17	170	75c	8-8	10-10	1-1	3-2	1-1	$1+2-1+2$	18
S6568	${ }^{\circ}$	21-21-19-17	173	87c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	18
S6569	\square^{7}	$21-21-21-17$	175	82 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	18
S6570	8	$21-21-21-17$	169	73c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	18
S6572	8	$21-21-21-17$	174	78 c	8-8	11-10	1-1	3-3	1-1	$1+2-1+2$	18
37829	$0^{\prime \prime}$	$21-21-17-17$	179	$51+$	8-8	10-10	$2-2$	$3-3$	1-1	$1+2-1+2$	19
37830	\%	21-21-17-17	171	$45+$	8-8	11-10	1-1	$3-3$	1-1	$1+3-1+3$	19
37831	0^{7}	21-21-17-17	177	88c	8-8	10-10	$2-2$	3-3	1-1	$1+3-1+2$	19
37832	9	21-19-17-17	173	77 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	19
37833	0°	$21-21-17-17$	177	$47+$	8-8	10-10	2-1	3-3	1-1	$1+3-1+2$	19
37834	\bigcirc	$21-21-17-17$	161	44 +	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	19
37835	0^{7}	21-21-17-17	173	88 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
37836	0^{7}	21-21-17-17	176	87c	8-8	10-10	$2-2$	3-3	1-1	$1+2-1+2$	19
37837	0^{7}	21-21-17-17	181	85c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
37838	0^{2}	21-21-19-17	179	95 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
37839		$21-21-17-17$	169		8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	19
37840	0	21-21-19-17	182	88 c	8-7	10-9	1-1	$3-3$	1-1	$1+2-1+2$	19
40936	0^{7}	21-21-17-17	177	85c	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	19
40937	${ }^{7}$	21-21-17-17	172	80 c	8-8	10-11	1-1	$3-3$	1-1	$1+3-1+2$	19
40938	0^{7}	21-21-17-17	180	86 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
40939	\bigcirc	$21-21-17-17$	174	79c	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+3$	19
40940	0^{7}	$21-21-17-17$	179	91 c	8-8	10-10	2-2	$3-3$	1-1	$1+3-1+2$	19
40941	0^{7}	21-21-17-17	177	85c	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	19
40942	0^{7}	21-21-17-17	181	86 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
40943	0^{7}	$21-21-17-17$	180	89c	8-8	10-10	1-2	3-3	1-1	$1+3-1+3$	19
40944	0^{7}	$21-21-17-17$	177	85 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	19
40945	\%	21-21-17-17	177	$66+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	19
S2665	9	19-21-17-17	160	70 c	8-8	10--10	1-1	3-3	1-1	$1+2-1+2$	20
S2666	$\%$	21-21-17-17	161	71 c	8-8	10-10	1-1	$3-3$	1-1	$1+3-1+3$	20
S2667	0^{7}	19-21-19-17	159	83 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	20
S1658	0^{7}	19-21-19-17	166	$82+$	8-8	10-10	1-1	$3-2$	1-1	$1+2-1+2$	21
S1661	${ }^{7}$	21-21-17-17	167	87 c	8-8	10-10	1-1	$3-3$	1-1	$1+3-1+3$	22
S1659	0^{7}	21-21-17-17	172	80 c	8-8	10-10	1-1	$3-3$	1-1	$1+2-1+2$	23
S1687	${ }^{7}$	20-21-17-17	172	$89+$	7-8	10-10	1-1	3-3	1-1	$1+2-1+2$	24
S1688	${ }^{\circ}$	$21-21-19-17$	172	91 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	24
41364	0^{7}	$21-21-19-17$	172	$68+$	8-8	10-10	1-1	3-2	$1-1$	$1+2-1+2$	25
41365	?	21-21-19-17	171	83 c	8-8	10-10	1-1	$3-3$	1-1	$1+3-1+2$	25
43531	9	$21-21-17-17$	169	83 c	8-8	10-10	1-1	4-4	1-1	$1+2-1+2$	25

Scale counts in Thamnophis ordinoides vagrans-Continued

Remarks.-This subspecies remains remarkably true to its peculiar color characters throughout the vast area which constitutes the greater portion of its range. It is only along the western edge of this area that much variation occurs. Specimens from western Nevada and from eastern California vary towards T. o. biscutatus, T. o. couchii and T. o. elegans, so that it may be said that intergradation with all these forms occurs. Thus, specimens from Humboldt County, Nevada, frequently have two preoculars as in T. o. biscutatus, and certain specimens from near Lake Tahoe leave one in doubt as to whether they might best be referred to T. o. vagrans, T. o. couchii or even T. o. elegans.

The two specimens from the San Pedro Martir Mountains in northern Lower California, which formerly were referred to T. hammondii, are very typical vagrans in coloration, but have low gastrostege counts. They constitute by far the most southern record for this subspecies and offer an interesting problem in distribution, for T. o. vagrans has never been taken in southern California.

The snakes taken at Elko, Nevada, had been feeding on the larvæ of Rana pipiens.

Thamnophis ordinoides biscutatus. Klamath Garter-Suake:-Photograph from living specimen collected at Klamath Falls, Klamath County. Oregon, June 14, 1918.

The specimens from the Pine Forest Mountains, Nevada, were collected at altitudes of $4300,6000,7800$, and 8400 feet.

Eleven specimens from the Warner Mountains, Modoc County, California, collected at altitudes of from 5000 to 7300 feet on Parker Creek and Squaw Peak (Nos. C2164 to 2179) have not been included in the analysis given above. No. 2164 has the coloration of nearly typical T. o. vagrans. The others show various degrees of approach to the coloration of T. o. elegans. No. C2166 is very close to the elegans style. No. C2168 is similar in coloration to the Klamath Falls snakes, but all of these Warner Mountain specimens have single preoculars. It is probable that the type of Cope's Eutenia elegans brunnea, from Fort Bidwell, Modoc County, is such a specimen. Scale-counts of the Warner Mountain specimens are as follows:

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals
C2164	$\%$	21-21-17	171	78	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$
C2165	0^{7}	21-21-17	176	84	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+3$
C2166	${ }^{\circ}$	21-21-17	178	94	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$
C2167	$0^{\prime \prime}$	21-21-17	188	$59+$	8 -7	10-10	1-1	3-3	1 -1	$1+2+3-1+2+3$
C2168	\%	21-21-17	171	79	8-8	10--9	1-1	3-3	1-1	$1+2+3-1+2+3$
C2169	\bigcirc	21-21-17	172	78	8-8	10-10	1-1	3-3	1-1	$1+3+3-1+2+3$
C2170	0^{7}	19-19-17	175	77	8 -7		1 -1	3-3	1-1	$1+2+2-1+2+2$
C2171	O^{7}	21-21-17	177	87	8-8	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$
C2172	8	21-21 17	171	79	8-8	10-10	1-1	3-3	1 -1	$1+2+3-1+2+3$
C 2173	\%	21-21-17	168	80	8-8	10-10	1 -1	3-4	1 -1	$1+2+3-1+2+3$
C2179	\%	21-21-17	171	81	8-8	10-10	1-1	3-3	1-1	

Thamnophis ordinoides biscutatus (Cope)

Klamath Garter-Snake.
Diagnosis.-Normally with eight supralabials; twenty-one or twenty-three rows of scales; dorsal line distinct; dorsal spots invading edges of dorsal line but often not showing by reason of the dark ground color; often with dark markings on the gastrosteges; usually more than one preocular.

Type Locality.-Klamath Lake, Oregon.
Synonyms.-It is probable that Yarrow's Eutcnia Henshawi from Fort Walla Walla, Washington, may have been based upon a specimen of this subspecies. Ruthven included these snakes under the name T. o. elegans.

Range.-This subspecies is or was exceedingly abundant about the Klamath lakes. Thence it ranges east to Goose Lake, Modoc County, California, west to Josephine County, Oregon, and Del Norte County, California. Farther north it occurs near Puget Sound, Washington, and in British Columbia.

We have examined specimens from the following locali-ties:-

1. Lillooet River Valley, British Columbia.
2. San Juan Islands, San Juan Co., Washington.
3. Rogue River, Grants Pass, Josephine Co., Oregon.
4. South Fork, Coquille River, 20 miles above Myrtle Point, Coos Co., Ore.
5. Gasquet, Del Norte Co., California.
6. Klamath Falls, Klamath Co., Ore.
7. Lower Klamath Lake, Siskiyou Co., Cal.
8. Goose Lake, Modoc Co., Cal.
9. Davis Creek, Modoc Co., Cal.

Material.-More than two hundred and fifty specimens have been studied by us.

Variation.-The variations shown by these specimens are as follows:

The loreal is $1-1$ in all specimens. Preoculars are $2-2$ in one hundred and fifty-nine, or 63%; 1-2 in twenty-five, or 10%; $1-1$ in sixty-three, or 25%; and 2-3 in one. Postoculars are 3-3 in two hundred and thirteen, or 80%; 3-4 in twenty-six, or $10 \% ; 4-4$ in five, or $2 \% ; 2-3$ in three, or 1%; and $4-1$ in one. Temporals are $1+2-1+2$ in one hundred and ninety, or $77 \% ; 1+3-1+3$ in sixteen, or $6 \% ; 1+2-1+3$ in thirty-nine, or 15%. The supralabials are $8-8$ in two hundred and thirty-two, or 92%; 7 -8 in eleven, or 4%; and 7 - 7 in four, or 1%. The infralabials are $10-10$ in two hundred and twenty-two, or 88%; 9-10 in thirteen, or 5%; 9-9 in eight, or 3%; 10-11 in two, and 8-8 in one. The scalerows are $21-21-17$ in two hundred and sixteen, or 87%; $21-19-17$ in nine, or $3 \% ; 21-23-17$ in six, or 2%; $21-$ $17-17$ in three, or $1 \% ; 19-17-17$ in three, or $1 \% ; 19-$ 19-17 in two, 19-17-15 in two, 23-19-17 in two, 23-21-19 in one, $17-17-17$ in one, and $20-21-17$ in one.

The gastrosteges vary in number from 151 to 183, males having from 157 to 183 , females from 151 to 176 ; the average in one hundred and twenty males is 171 , in one hundred and twenty-three females, 166. The urosteges vary from 63 to 97 , males having from 76 to 97 , females from 63 to 91 ; the average in one hundred and twelve males is 84 , in one hundred and three females, 77 . These variations are shown in full in the following table of scale-counts.

Scale counts in Thamnophis ordinoides biscutatus (Cope)

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supra- labials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
S5169	0^{7}	19-17-15	166	86 c	8-8	10-10	$2-2$	3-2	1-1	$1+2-1+2$	1
S5172	7	21-17-17	156	71c	8-8	9-10	1-1	3-3	1-1	$1+2-1+3$	1
S5173	0^{7}	21-19-17	169	$84+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	1
S5175	\%	21-19-17	164	$31+$	8-8	$10-10$	2-2	3-3	1-1	$1+3-1+2$	1
S6516	\%	23-21-19	158	69 c	8 -8	$11-10$	$2-2$	3-4	1-1	$1+3-1+3$	2
S4059	\%	21-19-17	162	80 c	8-8	10-10	1-1	4-3	1 -1	$1+3-1+2$	3
S4471	0^{7}	19-17-17	158	83 c	8-8	10-10	$2-2$	$3-3$	1-1	$1+2-1+3$	4
S4473	0^{7}	19-17-15	157	86 c	8-8	8-8	1-1	3-3	1-1	$1+2-1+3$	4
S4474	\bigcirc	17-17-17	151	77 c	8-8	9-9	1-1	3-3	1-1	$1+3-1+3$	4
S4476	\bigcirc	19-17-17	156	78 c	$8-8$	10-10	1-1	3-3	1-1	$1+3-1+2$	4
S4479	\%	19-17-17	159	76 c	8-8	10-10	2-1	3-3	1-1	$1+3-1+3$	4
S4264	0^{7}	21-19-17	166	86 c	8-8	$10-9$	1-1	3-3	1-1	$1+3-1+3$	5
20161	0^{7}	21-21-17	170	76	8-8	10-10	$1-1$	4-3	1-1	$1+2+3-1+2+3$	6
20162	0^{7}	21-21-17	172	89	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20163	\%	21-21-17	165	79	8-8	10-10	$2-2$	4-3	$1-1$	1+2+3-1+3+3	6
20164	$0^{\prime \prime}$	21-21-17	177	91	8 -7	9-10	1-1	3-3	$1-1$	$1+2+3-1+2+3$	6
20165	0^{7}	21-21-17	175	89	8-8	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+3+3$	6
20166	0^{7}	21-21-17	166	$23+$	8-8	10-10	2-2	3-3	1 -1	$1+2+3-1+2+3$	6
20167	\%	21-21-17	170	82	8-8	10-10	1-1	4-4	1-1	$1+2+3-1+2+3$	6
20168	\%	21-21-17	166	$44+$	8-8	10-10	$2-2$	4-4	1-1	$1+2+3-1+2+3$	6
20169	0^{7}		176	88	8-8	9-9	2-2	3-3	1-1	$1+2+4-1+2+3$	6
20170	\%	21-17	164	77	8 -8	10-10	2 -2	3-3	1-1	$1+2+3-1+2+3$	6
20171	\%	21-21-17	163	73	8 -8	10-10	2-1	3-3	1-1	$1+2+3-1+2+3$	6
20172	\%	21-23-17	164	78	8-8	10-10	2 -2	$3-3$	$1-1$	$1+2+3-1+2+3$	6
20173	0^{7}		172	76	8-8	9-9	$2-2$	3-3	$1-1$	$1+2+3-1+2+3$	6
20174	\bigcirc	$21-21-17$	163	77	$8-8$	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+2+3$	6
20175	\%	19-19-17	164		7 -7	9-10	1-1	3-3	1-1.	$1+2+2-1+2+2$	6
20176	0^{7}	21-21-17	171	$73+$	8-8	10-10	2 -2	$3-3$	$1-1$	$1+2+3-1+2+3$	6
20177	0^{7}	21-21-17	168	90	7-8	10-10	$1-2$	3-3	1-1	$1+2+3-1+2+3$	6
20178	9	21-21-17	169	78	$8-8$	10-10	$1-1$	$3-3$	1-1	$1+2+3-1+2+3$	6
20179	0^{3}	21-21-17	175	92	8 -8	10-10	2 -2	$3-3$	1 -1	$1+2+3-1+2+4$	
20180	0^{7}	21-21-17	171	$63+$	$8-8$	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20181	0^{7}	21-21-17	171	86	8-8	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+2+3$	6
20182	0^{7}	21-21-17	172	91	8-8	10-10	2 -2	$3-3$ $3-3$	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20183	0^{7}	21-21-17	175	87	8-8	10-10	2 -2	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20185	0^{7}	21-21-17	172	$41+$	8 -8	9-10	2 -3	1-4	1 -1	$1+2+3-1+2+3$	6
20186	0^{7}	21-21-17	172	90	8-8	10-10	1-2	3-3	1 -1	$1+2+2-1+2+3$	6
20187	0^{7}	21-21-17	175	88	$8-8$	9-9	1-1	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20189	0^{7}	21-21-17	170	85	8 -8	10-10	$2-2$	$3-3$	1 -1	$1+2+3-1+2+3$	6
20190	0^{7}	21-21-17	173	79	8-8	10-10	2 -2	$3-3$	$1-1$	$1+2+3-1+2+3$	6
20191	0^{7}	21-21-17	173	83	8 -8	10-10	$1-1$	$3-3$	1-1	$1+2+3-1+2+3$	6
20192	0^{7}	21-21-17	167	92	8 -8	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+2+3$	6
20193	0^{7}	21-21-17	171	93	8-8	10-10	2-2	3-3	$1-1$	$1+2+3-1+2+3$	6
20194	0^{7}	21-21-17	168	86	8-8	10-10	1-1	$3-3$	$1-1$	$1+2+3-1+2+3$	6
20195	0^{7}	21-21-17	169	88	8-8	10-10	$2-2$	$3-3$	1 -1	$1+3+3-1+2+3$	6
20197	0^{7}	21-21-17	174	95	8 -8	10-10	1-1	4-3	1-1	$1+2+3-1+3+3$	6
20198	0^{7}	21-21-17	170	88	8-8	10-10	$2-2$	$3-3$	1-1	$1+3-1+3+3$	6
20199	σ^{7}	21-21-17	172	91	8-8	10-10	$2-2$	$3-3$	1 -1	$1+2+3-1+2+3$	6
20200	${ }^{7}$	21-21-17	173	$75+$	8-8	10-10	1-2	$3-3$ $3-3$	1-1	$1+2+2-1+2+3$ $1+3+3-1+3+3$	
20201	0^{7} o^{7}	21-21-17	170 174	86 93	8-8	$10-10$ $10-10$	$2-2$	$3-3$ $3-3$	$1-1$	$1+3+3-1+3+3$ $1+2+3-1+2+3$	6
20203	\%	21-21-17	161	77	8-8	10-10	2-1	4-3	1-1	$1+2+3-1+2+3$	6
20204	0^{7}	$21-21-17$	175	86	8-8	10-10	1-2	3-3	1-1	$1+2+3-1+2+3$	6
20205	\bigcirc	21-21-17	163	82	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6

Scale counts in Thamnophis ordinoides biscutatus (Cope)—Continued

Number	Sex	Scale rows	$\begin{gathered} \text { Gastro- } \\ \text { steges } \end{gathered}$	Urosteges	Supralabials	Infra- labials	Preoculars	Postoculars	Loreals	Temporals	Locality
20206	8^{7}	21-21-17	177	87	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20207	0^{7}	21-21-17	174	89	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+3+3$	6
20208	0^{7}	21-21-17	172	91	8-8	10-10	$2-2$	3-3	1-1	$1+3-1+2$	6
20209	0^{7}	21-21-17	173	90	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20210	0^{7}	21-21-17	168	86	8-8	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+3+3$	6
20216	0^{7}	21-21-17	169	93	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20217	0^{7}	21-21-17	165	92	8-8	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+2+3$	6
20218	0^{7}	21-21-17	170	92	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20219	\%	$21-21-17$	167	78	$8-8$	10-10	2-1	$2-3$	1-1	$1+2+3-1+2+3$	6
20220	0^{7}	21-21-17	173	89	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20221	0^{7}	21-21-17	168	90	8-8	10-10	1-1	3-3	$1-1$	$1+2+3-1+2+3$	6
20222	0^{7}	$21-21-17$	171	87	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20223	0^{7}	21-21-17	169	79	8-8	10-10	1-1	$3-3$	1-1	$1+2+3-1+2+3$	6
20224	\%	$21-21-17$	169	79	8-8	10-10	1-1	$3-3$	1-1	$1+2+3-1+2+3$	6
20225	8	$21-21-17$	169	73	8-8	9-9	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20226	0^{7}	21-21-17	170	91	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20227	0^{7}	$21-21-17$	168	88	8-8	10-10	2-1	3-3	1-1	$1+2+3-1+2+3$	6
20228	\bigcirc	23-19	169	63	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20229	8	21-21-17	167	77	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$	6
20230	8	21-21-17	167	88	8-8	10-10	1-2	3-4	1-1	$1+2+3-1+2+3$	6
20231	\%		162	86	$7-7$	9-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20232	\%	$21-21-17$	165	79	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20233	0^{7}	$?-21-?$	173	89	$8-8$	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	6
20234	\%	21-21-17	167	84	8-8	9-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20235	8	21-21-17	163	74	8-8	$9-9$	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20236	8	21-19-17	161	80	8-8		2 -1	3-3	1-1	$1+2+3-1+2+3$	6
20237	${ }^{7}$	21-21-17	175	$34+$	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20238	0^{7}	21-21-17	174	85	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20239	8	21-21-17	166	75	8-8	10-10	$2-2$	$3-3$	1-1	$1+2+1-1+2+3$	6
20240	8	21-21-17	161	78	8-8	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+2+3$	6
20241	8		176	91	8-?	10-10					6
20242	9	21-21-17	170	85	8-8	10-10	$1-1$	$2-2$	1-1	$1+2+3-1+2+3$	6
20243	0^{7}	21-21-17	175	87	8-8	10-10	$2-2$	3-3	1-1	$1+3+3-1+3+3$	6
20244	${ }^{7}$	21-21-17	180	$69+$	$8-8$	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+3+3$	6
20245	0^{7}	21-21-17	168	$74+$	$8-7$	9-10	$2-2$	$3-3$	1-1	$1+2+3-1+2$	6
20246	0^{7}	$21-21-17$	175	90	8-8	10-10	$2-2$	2-3	1-1	$1+2+3-1+2+3$	6
20247	0^{7}	21-21-17	171	85	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20248	0^{7}	21-21-17	173	92	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20249	8	21-21-17	164	72	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20250	0^{7}	21-21-17	172	90	$8-8$	9-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20251	0^{7}	21-21-17	165	90	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20252	$\%$	21-21-17	169	76	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+3+3$	6
20253	0^{7}	$21-23-17$	173	94	8-8	10-10	$2-2$	4-4	1-1	$1+3+3-1+2+3$	6
20254	8	21-21-17	166	80	8-8	10-10	$2-2$	3-4	1-1	$1+2+3-1+2+3$	6
20255	0^{7}	21-21-17	171	84	8-8	10-10	$2-2$	3-3	1-1	$1+3+4-1+2+3$	6
20256	8	21-21-17	166	$73+$	8-8	10-10	2-1	3-3	1-1	$1+3+3-1+3+3$	6
20257	0^{7}	21-21-17	174	$53+$	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20258	8	21-21-17	164	$58+$	8-8	10-10	2-1	3-3	1-1	$1+2+3-1+2+3$	6
20259	8	21-21-17	170	81	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20260	0^{7}	21-21-17	173	$63+$	8-8	10-10	$2-2$	3-3	1-1	$1+2+4-1+2+3$	6
20261	8	21-21-17	168	84	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20262	${ }^{7}$	21-21-17	169	93	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20263	0^{7}	21-21-17	171	88	$8-8$	10-10	$2-2$	3-3	$1-1$	$1+2+2-1+2+3$	6
20264	$\%$	21-21-17	166	70	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+3+4$	6
20265	$0^{\prime \prime}$	21-21-17	171	90	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20266	8	21-21-17	164	76	$8-8$	10-10	$2-2$	4-3	1-1	$1+2+3-1+2+2$	6
20267	\%	21-21-17	166	79	8-8	10-10	$2-2$	4-3	1-1	$1+2+3-1+3+3$	6
20268	8	$21-21-17$	164	79	8-8	10-10	1-1	3-3	1-1	$1+2+4-1+3+3$	6
20269	9	21-21-17	168	$47+$	8-8	10-10	$2-2$	3-3	1-1	$1+3+3-1+2+3$	6
20270	0^{7}	21-21-17	173	89	$8-8$	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20271	$\%$	21-21-17	170	81	8-8	10-10	$1-2$	$4-3$	1-1	$1+2+3-1+2+3$	6
20272	$\%$	21-21-17	166	80	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20273	8	21-21-17	160	73	8-8	10-10	1-2	3-3	1-1	$1+2+3-1+2+3$	6
20274	0^{7}	21-21-17	175	89	8-8	10-10	1-2	3-3	1-1	$1+2+3-1+2+3$	6
20275	8	21-21-17	169	75	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20276	8	21-21-17	170	77	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20277	0^{7}	21-21-17	171	96	$7-7$	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20278	8	21-21-17	167	80	8-8	10-10	1-1	$4-3$	1-1	$1+2+3-1+2+3$	6
20279	0^{7}	21-21-17	169	90	$8-8$	10-10	1-1	3-3	1-1	$1+2+3-1+2+2$	6
20280	0^{7}	21-21-17	175	89	8-7	10-10	2-1	3-3	1-1	$1+2+2-1+3+3$	6
20281	8	$21-21-17$	163	75	8-8	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+2+3$	6
20282	${ }^{-7}$	21-21-17	174	90	8-8	10-10	$2-1$	3-3	1-1	$1+2+2-1+3+3$	6
20283	or	$21-21-17$	167	84	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20284	0^{7}	$21-21-17$	173	90	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$	6
20285	8	$21-21-17$	167	76	8-8	10-10	$2-2$	4-3	1-1	$1+2+3-1+2+3$	6

Scale counts in Thamnophis ordinoides biscutatus (Cope)-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Post oculars	Loreals	Temporals L	Local- ity
	Sex							3-3	1-1	+2+3-1+2+2	6
20286	\%	$21-21-17$	173	81 86	$8-8$ $8-8$	$10-10$ $10-10$	2-1	3-3	1-1	$1+2+3-1+2+3$	6
20287	8	$21-21-17$	170 173		8-8	10-10	1-1	3-3	1-1	$+2+3-1+2+3$ $+2+2-1+3+3$	6
20288	σ^{\prime}	$21-21-17$	173	89 93	8-8	10-10	2-2	3-3	$1-1$	$1+2+2-1+3+3$	6
20289	0^{7}	$21-21-17$	169	93 78	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+2$	6
20290	\%	$21-21-17$	166	78	8-8	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+2+3$ $1+3-3+2+3$	6
20291	\%	21-21-17	171	78 93	8-8	10-10	$2-2$	3-3	$1-1$	$1+3+3-1+2+3$ $1+2+3-1+2+3$	6
20292	\%	21-21-17	171	97	8 -8	10-10	1-1	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20293	0^{7}	21-21-17	171 172	88	8-8	10-10	1-1	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	0
20294	0^{7}	$21-21-17$ $21-21-17$	162	88	8 -8	10-10	$1-1$	3-3	1-1	$1+2+3-1+2+3$ $1+3+4-1+3+3$	0
20295	\bigcirc	$21-21-17$ $21-21-17$	162	88	$8-8$	10-10	$2-2$	$3-3$	1 -1	$1+3+4-1+3+3$ $1+3+3-1+2+3$	6
20296	$\stackrel{\square}{8}$	21-21-17	167	80	8-8	10-10	$2-2$	3-3	$1-1$	$1+3+3-1+2+3$ $1+2+3-1+3+4$	6
20297	\%	21-21-17	168	73	8 -8	10-10	1-1	$3-3$	1-1	$1+2+3-1+3+4$ $1+2+3-1+2+3$	6
20298	8	$21-21-17$ $21-21-17$	166	78	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20299	$\%$	$21-21-17$ $21-21-17$	169	78	8-8	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+2+3$ $1+3+3-1+2+3$	6
20300	8	21-21-17	168	96	8 -8	10-10	$1-1$	$3-3$	1 -1	$1+3+3-1+2+3$ $1+2+3-1+2+3$	6
20301	0^{7}	21-21-17	168 172	82	8 -8	10-10	1-2	3-3	1-1	$1+2+3-1+2+3$ $1+3+3-1+3+3$	6
20302	$\stackrel{7}{0}$	21-21-17	172	91	$8-8$	10-10	$2-2$	$3-3$	1-1	$1+3+3-1+3+3$ $1+2+3-1+2+3$	6
20303	0^{7}	21-21-17	169	83	8-8	10-10	2-2	3-3	1 -1	$1+2+3-1+2+3$ $1+3+3-1+2+3$	6
20304	9	21-21-17	178	91	8 -8	10-10	1-1	3-3	$1-1$	$1+3+3-1+2+3$ $1+2+3-1+3+3$	6
20305	0^{7}	$21-21-17$ $21-21-17$	173	94	7-8	10-10	2-2	3-3	1-1	$1+2+3-1+3+3$ $1+2+3-1+2+3$	6
20306	${ }^{7}$	21-21-17	178 170	87	8-8	10-10	2 -2	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20307	0^{7}	21-21-17	176	90	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20308	0^{7}	21-21-17	176	92	7-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+3+3$	6
20309	0^{7}	$21-21-17$ $21-21-17$	164	78	8-8	10-10	1-2	3-3	1-1	$1+2+3-1+3+3$ $1+2+3-1+2+3$	6
20310	\bigcirc	21-21-17	163	75	7 -7	10-9	$2-2$	3-3	1 -1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20311	${ }^{\circ}$	21-21-17	163 172	90	8-8	10-10	1-1	$3-3$	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20312	0^{7}	$21-21-17$	170	$63+$	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20313	8	21-21-17	164	84	8 -8	10-9	1-1	3-3	1-1	$1+2+3-1+2$ $1+2+3-1+2$	${ }^{6}$
20314	9	21-21-17	173	92	8-8	10-10	2-2	3-3	$1-1$	$1+2+3-1+2+$ $1+2+3-1+2+$	6
20315	0^{7}	21-21-17	165	85	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	0
20316	\%	21-21-17	170	70	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20317	8	21-21-17	164	76	8-8	10-10	2-2	4-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20318	8	$21-21-17$ $21-21-17$	162	82	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20319	8	$21-21-17$ $21-19-17$	171	82	8-8	10-10	2-2	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20320	0°	21-19-17	169	87	8-8	10-10	2-1	$3-3$	1 -1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20321	8	21-21-17	165	78	8-8	10-10	$2-2$	3-3	1 1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20322	\bigcirc	21-21-17	167	92	8 -8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20323	0°	21-21-17	172	73	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20324	$\%$	21-21-17	172	88	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20325	0^{7}		163	75	8-8	10-10	$2-2$	3-3	1 -1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20326	8		170	74	8-9	10-10	$2-2$	3-4	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	6
20327	8	21-21-17-17	165	87	8-8	10-10	2-2	$3-3$	$1-1$	$1+2+3-1+2+3$ $1+3-1+2$,
20328	\bigcirc		167		8-8	9-10	2-2	4-3	$1-1$	$1+3-3-1+2+3$	3
20329	8		176	87	8-8	10-10	2-2	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+2$	析
20330	${ }^{\circ}$		167	89	8-8	10-10	$2-2$	4-3	1 -1	$1+2+3-1+2+2$ $1+2+3-1+2+2$	2
20331	0^{7}	21-21-17	167	75	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+2$ $1+2+3-1+2+3$	3
20332	\%		169	90	8-8	10-10	2-2	3-3	$1-1$		3
20333	${ }^{\circ}$	$21-23-17$	173	89	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	3
20334	${ }^{\circ}$	21-21-17	160	73	8-8	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	3
20335	7		166	93	8-8	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	3
20336	${ }^{7}$	21-21-17	172	89	8-8	10-10	$2-2$	3-4	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	+
20337	${ }^{\circ}$	$21-21-17$ $21-21-17$	174	94	8-8	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	36
20338	O	$21-21-17$ $21-21-17$	171	94	8-8	10-10	$2-2$	3-3	1 - 1	$1+2+3-1+2+3$ $1+2+4-1+2+4$	$4{ }^{1} 6$
20339	${ }^{\circ}$		167	82	8-8	10-10	$2-2$	3-4	1 -1	$1+2+4-1+2+4$ $1+2+3-1+2+3$	36
20340	${ }^{\circ}$		170	87	8-8	10-10	$2-2$	3-3	$1-1$	$1+2+3-1+2+3$	
20341	${ }^{\circ}$	21-21-17	170	78	8-8	10-10	$2-2$	3-3	1-1	$1+3-1+3+3$	8
20343	$\stackrel{8}{8}$	$21-21-17$ $21-21-17$	169	86	8-8	10-10	$2-2$	$3-3$	1-1	$1+2+3-1+2+3$ $1+2+4-1+2+3$	6
20344	${ }^{\circ}$	$21-21-17$ $21-21-17$	170	85	8-8	10-10	$2-2$	3-3	1-1	$1+2+4-1+2+3$ $1+3+3-1+2+3$	6
20345	${ }^{\text {c }}$	$21-21-17$ $21-21-17$	171	94	8-8	10-10	1-1	3-3	$1-1$	$1+3+3-1+2+3$ $1+2+4-1+3$	
20346	O'	21-21--17	165	80	8-8	10-10	2-2	3-4	1-1	$1+2+4-1+2+3$ $1+2+3-1+2$	$3{ }^{3} 8$
20347	\% ${ }^{8}$	21-21-17	171	93	8-8	10-10	$2-2$	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	36
20349	\%	21-21-17	174	91	8-8	?-10	2 -2	3-3	$1-1$	$1+2+3-1+2+3$ $1+2+3-1+2+3$	
20350	8	$21-21-17$ $21-21-17$	167	$58+$	8-8	10-10	1-1	$3-3$	1 -1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	
20351	\% ${ }^{8}$	21-21-17	168	89	8-8	10-10	2 -2	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	
20352	0 0 8	21-21- $21-17$	175	$60+$	8-8	10-10	1-1	4-3	1-1	$1+2+3-1+2+3$ $1+3+3-1+2+3$	
20353	${ }^{\circ}$	21-21-17	174	91	8-8	10-10	2-2	3-3	1-1	$1+3+3-1+2+3$ $1+2+3-1+2+3$	
20354	8	21-21-17	171	80	8-8	10-10	2 -2	$3-3$	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	
20355	8		171	79	8-8	9-9	$2-2$	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	
20356	\%	21-19-17	169	78	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$ $1+3+3-1+3+3$	
20357	\%		165	79	8-8	10-10	2-2	3-3	1-1	$1+3+3-1+3+3$ $1+2+3-1+2+3$	
20358	?		165	76	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+$ $1+2+3-1+2+1$	
20359		21-21-17	169	70	8-8	10-10	2-1	3-3	1-1	$1+2+3-1+2+3$ $1+2+3-1+2+3$	
20360	\%	21-21-17	168	66	8-9	10-10	2-1	4-4	1	$1 \begin{aligned} & 1+2+3-1+2+ \\ & 1+2+3-1+2+\end{aligned}$	
20362	$\stackrel{8}{7}$	21-21-17	164	$43+$	8-8	10-10	- $2-2$	3-4			

Scale counts in Thamnophis ordinoides biscutatus (Cope)-Continued

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supralabials	Infralabials	Preoculars	Postoculars	Loreals	Temporals	Locality
20363	$\%$	$21-21-17$	168	74	8-8	9-10	2-2	3-4	1-1	$1+2+3-1+2+3$	6
20364	$\%$	$21-21-17$	168	82	8-8	10-10	2-1	3-3	1-1	$1+3+3-1+3+3$	6
20365	0^{7}	21-21-17	169	$57+$	8-8	9-9	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20366	\%	21-21-17	168	82	7-8	10-10	2-2	3-3	$1-1$	$1+2+3-1+2+3$	6
20367	0^{7}	21-21-17	173	88	8-8	10-9	$2-2$	3-3	1-1	$1+2+3-1+2+3$	6
20368	\%	21-21-17	168	82	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20369	\bigcirc	21-21-17	163	79	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$	6
20370	0^{7}	21-21-17	177	92	8-8	10-10	1-2	3-3	1-1	$1+2+3-1+2+3$	6
20371	\%	21-21-17	168	79	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20372	\bigcirc	21-21-17	168	$21+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	6
20373	\%	21-21-17	164	75	8-9	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20374	\bigcirc	21-21-17	162	80	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$	6
20375	0^{7}	21-21-17	171	93	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$	6
20376	${ }^{7}$	21-21-17	173	91	8-8	10-10	2-2	2-3	1-1	$1+2+3-1+2+3$	6
20377	juv.	21-17	161	79	7-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+3$	6
20378		$23-17$	161	84	8-8	10-10	2-2	3-3	1-1	$1+2+3-1+2+2$	6
20379	\because	21	171	77	8-8	10-10	2 -2	3-3	1-1	$1+2+3-1+2+3$	6
20380	"	23	165	75	8-8	10-10	2-2	4-4	1-1	$1+2+3-1+3$	6
20381	\because	21-17	172	93	8-8	10-10	2-2	3-3	1 -1	$1+2+2-1+2+2$	6
20382	"	21	170	90	8 -8	10-10	2-2	3-3	1-1	$1+2+2-1+2+2$	6
20383	\because	21-21-17	166	77	8-8	10-10	2-1	4-3	1-1	$1+2+3-1+2$	6
20384	\because	$21-17$	173	88	8-7	10-10	2 -2	3-3	1-1	$1+2+3-1+2+3$	6
20385	"	21-21-17	163	91	8-8	10-10	2-2	3-3	1-1	$1+2+2-1+2+2$	6
20386	$\%$	23	165	89	8-8	10-10	2 -2	3-3	1-1	$1+2+3-1+2+3$	6
20387	8	21-21-17	168	$68+$	$7-8$	10-9	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20390	${ }^{7}$	21-21-17	170	90	8-8	10-11	1-1	3-3	1-1	$1+3+3-1+2+4$	6
20391	8	21-21-17	167	81	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20392	\%	21-21-17	171	$40+$	8-8	10-10	1 -1	3-3	1-1	$1+2+3-1+2+4$	6
20393	\%	$21-21-17$	170	$68+$	8 -8	10-10	2 -2	4-3	1-1	$1+2+3-1+2+3$	6
20394	$\%$	$21-21-17$	171	$65+$	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20395	\%	$21-21-17$	165	80	8 -8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	6
20396	\bigcirc	$21-21-17$	170	$53+$	8 -8	10-11	1-1	3-3	1-1	$1+2+3-1+3+3$	6
20397	\%	$21-21-17$	168	$60+$	8 -8	10-10	2 -2	3-3	1 -1	$1+2+4-1+2+3$	6
20398	\%	$21-21-17$	166	$19+$	8 -8	10-10	2 -2	4-3	1-1	$1+2+3-1+2+3$	6
20399	\%	$21-21-17$	165	76	8 -8	10-10	2 -2	4-3	1-1	$1+3+4-1+3+4$	6
20400	8	$21-19-17$	162	73	8 -7	10-10	1-1	3-3	$1-1$	$1+2+3-1+3+3$ $1+2+1$	6
S1782	${ }^{\circ}$	23-19-17	172	$86+$	$8-8$	10-10	2-2	3-3	1-1	$1+2-1+2$	6
S1783	0^{7}	21-19-17	172	93 c	8-8	10-10	2-2	3-3	1-1	$1+2-1+2$	6
S1785	\bigcirc	23-19-17	168	77 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	6
S4134	\%	21-17-17	165	$71+$	8-8	10-10	2-2	3-3	1-1	$1+3-1+3$	6
C5431	\bigcirc	21-21-17	166	70	8-8	10-10	1-1	3-3	1-1	$1+2+3-1+2+3$	7
C5432	${ }^{\circ}$	$21-21-17$	165	$69+$	7-8	10-10	1-2	3-3	1 -1	$1+2+3-1+2+3$ $1+3-1+3$	7
C2147	0^{7}	$21-21-17$	177	85	8-8	10-10	2-2	3-3	1 -1	$1+2+2-1+2+2$	8
C2149	\bigcirc	19-19-17	173	82	8-8	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	8
C2152	0^{7}	20-21-17	179	83	8 -8	10-10	2-2	$3-3$	1 -1	$1+2+3-1+2+3$	8
$\mathrm{C} 2153$	$=0^{8}$	21-21-17	183	92	$8-8$	10-10	$1-1$	3-3	1-1	$1+2+3-1+2+3$	8
$\stackrel{C}{C 2158}$		$21-21-17$ $21-21-17$	175 171	71	8-8	$9-10$ $10-10$	2 -2	$3-3$ $3-3$	1-1	$1+3+3-1+2+3$	8
C2163.	4	21-21-17	171	74	8-8	10-10	2-1	3-3	1-1	$\longrightarrow-1+2$	9

Remarks.-These snakes from the Klamath region are very similar to T. o. vagrans but the ground color of the dorsolateral regions usually is much darker. For this reason the dark spots usually are inconspicuous. Occasional specimens show the spots very distinctly, and in most specimens they may be seen when looked for. These spots invade the dorsal line just as they do in typical T. o. vagrans. The chief point of distinction between T. o. biscutatus and T. o. vagrans is the increase in the number of preoculars. Less than twenty-five per cent of the Klamath specimens do not show this increase on at least one side of the head, so that it must be regarded as a per-

a.-Thamnophis ordinoides couchii, Giant Garter-Snake:-Photograph from living specimen collected at Gadwall, Merced County, California, May 12, 1918.

b.-Thammophis ordinoides couchii, Giant Garter-Snake:-Photograph from living specimen collected at Gadwall, Merced Comnty; California, May 12, 1918.
fectly good subspecific character. A small number of the specimens also show an increased number of body scale-rows.

Specimens from northwestern Nevada, as those from the Pine Forest Mountains, Virgin Valley, and Quinn River Crossing, in Humboldt County, appear to be intermediate between this form and true T. o. vagrans, the coloration being typical of the latter while a tendency toward an increase in the number of preoculars is still present. These are listed with T. o. vagrans.

In the region of Puget Sound snakes of the vagrans type, a majority of which have two preoculars, are again encountered. We can see no reason for not including them here. It seems best to include here also the snakes from Del Norte County, California, and from Josephine and Coos counties, Oregon, although the number of specimens from these localities is so small as to leave one in doubt as to the usual number of preoculars, and the coloration is more like that of T. o. couchii.

Perhaps nowhere else in the world are snakes so abundant as near Klamath Falls. We counted a hundred and eighty on a small rock about a yard in diameter in Link River, and, at another point on the same river, caught fourteen with one grab with both hands. ${ }^{2}$ They feed upon small fish and toads. Most of these snakes are of this subspecies, but a few are Thamnophis sirtalis infernalis.

Thamnophis ordinoides couchii (Kennicott)

Giant Garter-Snake.

Diagnosis.-Normally with eight supralabials; twenty-one rows of scales; no red in coloration; dorsal line absent or indistinct posteriorly, usually distinct on neck; usually some dark markings on gastrosteges, preocular usually single ; infralabials often more than ten.

Type Locality.-Pitt River, California.

[^2]Synonyms.-No other names have been based upon individuals of this race. Specimens have been referred sometimes to hammondii, sometimes to vagrans, or elegans.

Range.-This subspecies is the common water-snake of the Sacramento and San Joaquin valleys of California from Shasta to Kern counties. It ranges west into Monterey County, where it has been taken in the valleys of the Carmel River and San Antonio and Nacimiento creeks. It ascends the valley of the Kern River to an altitude of some 6000 feet, and, doubtless, crosses through Walker Pass to the east side of the Sierra Nevada where it occurs in Owens Valley and about Pyramid Lake and Lake Tahoe. Its range lies chiefly in the Lower and Upper Sonoran zones.

We have examined specimens from the following locali-ties:-

1. Carmel Valley, Monterey Co., California.
2. San Antonio Creek, near Mission San Antonio, Monterey Co., Cal.
3. Nacimiento Creek, Monterey Co., Cal.
4. Long's Ranch, Battle Creek, Shasta Co., Cal.
5. Cottonwood, Shasta Co., Cal.
6. Orland, Glenn Co., Cal.
7. Stoney Creek, Glenn Co., Cal.
8. Strawberry Valley, Yuba Co., Cal.
9. Red Point, Placer Co., Cal.
10. Fyffe, El Dorado Co., Cal.
11. Riverton, El Dorado Co., Cal.
12. Priest Hill, Tuolumne Co., Cal.
13. Pleasant Valley, Mariposa Co., Cal.
14. Yosemite Valley, Mariposa Co., Cal.
15. Los Baños, Merced Co., Cal.
16. Merced Co., Cal.
17. Gadwall, Merced Co., Cal.
18. Raymond, Madera Co., Cal., at 940 feet altitude.
19. Hume, Fresno Co., Cal.
20. Fresno, Fresno Co., Cal.
21. Trout Meadows, Tulare Co., Cal.
22. Little Kern River Lake, Tulare Co., Cal.
23. Trout Creek, 6000 feet, Sierra Nevada, Tulare Co., Cal.
24. Cannell Meadows, Sierra Nevada, Tulare Co., Cal.
25. Walkers Basin, Kern Co., Cal.
26. Kern River, near Bodfish, Kern Co., Cal., at 2400 feet.
27. Buena Vista Lake, Kern Co., Cal.
28. Mt. Tallac, El Dorado Co., Cal.
29. Fallen Leaf Lake, El Dorado Co., Cal.
30. Fallen Leaf Lake, El Dorado Co., Cal.
31. Tahoe City, Placer Co., Cal.
32. Lake Tahoe, El Dorado Co., (?) Cal.
33. Glenbrook, Douglas Co., Nevada.
34. Wadsworth, Washoe Co., Nev.
35. Pyramid Lake, Washoe Co., Nev.
36. Owens Valley, Inyo Co., Cal.
37. Laws, Inyo Co., Cal.

Material.-Sixty-seven specimens from these thirty-seven localities have been included in this study.

Variation.-Sixty-five specimens show the following variations:
Loreal $1-1$ in all specimens. Preoculars $1-1$ in fifty-two, or $81 \% ; 2-2$ in eleven, or 17%; and $1-2$ in one, or 2%. Postoculars 3-3 in fifty-six, or $89 \% ; 2-3$ in six, or 9%; and $2-2$ in one, or 2%. Temporals $1+2-1+2$ in thirty-eight, or $60 \% ; 1+3-1+3$ in thirteen, or $20 \% ; 1+2-1+3$ in eleven, or 17%; and $1+3-1+4$ in one, or 2%. The supralabials are $8-8$ in sixty-two, or 95%; and $8-9$ in three, or 5%. The infralabials are $10-10$ in forty, or 61%; 11-11 in twelve, or 18%; 9-10 in six, or $9 \% ; 10-11$ in five, or $8 \% ; 11-9$ in one, or 2%; and $9-9$ in one, or 2%. The scale-rows are 21 -19-17 in thirty-one, or $48 \% ; 21-21-17$ in twenty-four, or 38%; 19-21-19-17 in six, or $9 \% ; 19-19-17$ in two, or 3%; and $23-21-17$ in two, or 3%. The gastrosteges vary from 153 to 181, males having from 160 to 181, females from 153 to 177 ; the average in twenty-two males is 172.3 , in fortythree females, 167. The urosteges vary from 65 to 99 , males having from 77 to 99 , females from 65 to 88 ; the average in fourteen males is 88.4, in thirty-eight females, 81.7.

This variation is shown in full in the following table of scale-counts.

Scale counts in Thamnophis ordinoides couchii

Number	Sex	Scale rows	Gastrosteges	Urosteges	Supra- labials	Infralabials	Pre. oculars	Postoculars	Loreals	Temporals	Local. ity
S4273	\%	21-21-19-17	164	68c	8-9	10-10	2 -2	3-3	1-1	$1+2-1+2$	1
S4326	8	$21-21-17-17$	165	73c	8-8	10-10	2-2	3-3	1-1	$1+3-1+3$	1
S6513	\%	-21-21-19-17	166	$73+$	8-8	10-10	2 -2	3-3	1-1	$1+3-1+2$	2
S6518	8	$21-21-19-17$	162	68c	8-8	10-10	2 -2	3-3	1-1	$1+2-1+2$	3
S6519	\%	$21-21-19-17$	156	71c	8-8	10-10	1-2	3-3	1-1	$1+2-1+2$	3
S6708	\%	$21-21-19-17$	171	75 c	8 -8	$11-11$	1-1	3-3	1-1	$1+2-1+3$	4
S4432	\%	19-19-17-17	160	81 c	8-8	10-10	1-1	2-2	1-1	$1+3-1+2$	5
S4433	${ }^{\circ}$	19-21-19-17	170	84 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	5
S4431	0	19-19-17-17	162	83 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	6
S4430	0^{7}	19-21-19-17	167	$75+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	7
S6309	${ }^{\circ}$	$21-21-19-17$	177	89 c	8-8	11-11	1 -1	3-3	1-1	$1+3-1+3$	8
S1805	\bigcirc	$21-21-17-17$	169	79c	8-8	$11-11$	1-1	3-3	1-1	$1+2-1+3$	9
S4169	\%	$21-21-17-17$	175	77 c	8-8	10-10	1-1	$2-3$	1-1	$1+2-1+2$	10
S4376	\%	$21-21-19-17$	163	83 c	8-8	11-11	1-1	3-3	1-1	$1+2-1+2$	11
S4377	\bigcirc	$21-21-17-17$	168		8-8	10-10	1-1	3-3	1-1	$1+3-1+3$	11
39636	${ }^{7}$	$21-21-19-17$	179	99 c	8-8	9-10	1-1	3-3	1-1	$1+3-1+3$	11
S4132	\bigcirc	$21-21-19-17$	167	82c	8 -8	10-10	1-1	$3-3$	1-1	$1+3-1+3$	12
C5893	0°	$21-21-19-17$	170	$68+$	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	13
C5898	\bigcirc	$21-21-19-17$	163	80 c	$8-8$	10-10	1 -1	3-2	1-1	$1+2-1+2$	13
C5899	\bigcirc	$21-21-19-17$	167	$72+$	8 -8	11-11	1-1	3-3	1-1	$1+2-1+3$	13
C5897		$21-21-19-17$	176	$37+$	$8-8$	10-10	1-1	3-3	1-1	$1+2-1+2$	14
C5904	\%	$21-21-19-17$	174	85 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+3$	14
C5902	${ }^{\circ}$	$21-21-19-17$	181	97 c	8 -8	9-10	1-1	3-3	1-1	$1+2-1+2$	14
13635		21-21-17	155	71 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	15
13636	0^{7}	21-21-17	160	77 c	8-8	X-9	2-2	3-3	1-1	$1+2-1+2$	15
13637	8	23-21-17	159	68c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	15
13638	\%	$21-21-17$	159	70 c	8-8	11-10	1-1	3-3	1-1	$1+2-1+2$	15
17999	\%	$21-21-17$	157	41 +	8-8	9-10	1-1	3-3	1-1	$1+2-1+2$	15
36071	\%	21-21-17	157	65 c	8-8	11 -9	1-1	3-3	1-1	$1+2-1+2$	15
13640	\%	21-21-17	156	71 c	8-8	11-11	1-1	3-3	1-1	$1+2-1+3$	16
C5428	\%	21-21-17	159	68c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	17
C2753	\%	$21-21-17$	166	81 c	8-8	11-11	2-2	3-3	1-1	$1+3-1+3$	18
C6265	\%	$21-21-19-17$	176	88 c	8-8	10-10	2-2	3-3	1-1	$1+3-1+2$	19
S1753	\%	21-21-17	169	82 c	8-8	10-10	1-1	3-3	1-1	$1+3-1+2$	20
S1754	\bigcirc	21-21-17	169	81 c	8-8	10-10	2-2	3-3	1-1	$1+2-1+2$	20
S1756	8	21-21-17	170	$59+$	8-8	10-10	2-1	3-3	1-1	$1+2-1+2$	20
S4127	$0^{\prime \prime}$	21-21-17	172	94 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	20
S1755	\%	21-19-17	168	78 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	20
S1665	\%	21-21-17	169	80 c	8-8	10-10	1-1	3-3	1-1	$1+3-1-$	21
S1666	8	21-21-17	174	85 c	8-8	11-11	1-1	3-3	1-1	$1+2-1+2$	22
C2808	0^{7}	21-21-17	175	$51+$	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	23
C2809	\%	$21-21-17$	166	84 c	8-8	10-10	1-1	3-3	1 -1	$1+2+2-1+2+2$	23
C2806	${ }^{7}$	19-21-17	170	88 c	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+2$	24
C2807	\%	$21-21-17$	165	84 c	8-8	10-10	1-1	3-3	1-1	$1+2+2-1+2+1$	24
C2800	8	21-21-17	173	82 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	25
C2799	0^{7}	21-21-17	172	$31+$	8 -8	$11-11$	1-1	$3-3$	1-1	$1+2+2-1+2+2$	26
43256	8	$21-21-19-17$	155	75 c	$8-8$	11-11	1-1	3-3	1-1	$1+2-1+2$	27
43257	${ }^{7}$	$21-21-19-17$	162	78 c	$8-8$	10-10	1-1	$3-3$	1-1	$1+2-1+2$	27
43258	\bigcirc	$21-21-19-17$	158	69c	8-8	11-10	1-2	$3-2$	1-1	$1+2-1+2$	27
43259	8	$23-21-19-17$	153	72 c	8-8	10-11	1-1	3-3	1-1	$1+2-1+2$	27
43260	0^{7}	$21-21-19-17$	167	83 c	$8-8$	10-10	1-1	3-3	1-1	$1+2-1+2$	27
S6675	\%	$21-21-17$	170	85 c	8-8	$11-10$	2-2	3-3	1-1	$1+2-1+2$	28
S5313	$\stackrel{\square}{8}$	21-21-19-17	167	80 c	8-8	10-10	$2-2$	3-3	1-1	$1+3-1+3$	29
36320	${ }^{7}$	21-21-17	179	98c	8-8	10-9	$2-2$	$2-3$	1-1	$1+3-1+3$	29
36321	0^{7}	19-21-17	174	79 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	29
36322	$\stackrel{8}{8}$	21-21-17	162	84 c	8-8	9-9	1-1	$3-3$	1 -1	$1+3-1+2$	29
36324	8	19-21-17	166	78 c	8-8	10-10	1-1	3-3	1-1	$1+2-1+2$	29
S6560	8	$21-21-19-17$	176	$44+$	8-8	11-11	1-1	3-3	1-1	$1+3-1+2$	31
S6561	\%	19-21-19-17	170	$77+$	$8-9$	10-10	1 -1	3-2	1 -1	$1+3-1+4$	31
S1695		$21-21-19-17$	177	92 c	8-8	11-10	1-1	3-3	1 -1	$1+2-1+2$	3.1
S6532	\bigcirc	21-21-19-17	166	77c	8-9	10-10	$1-1$	$2-3$	1 -1	$1+3-1+3$	32
37999	${ }^{8}$	21-21-19-17	171	88 c	$8-8$	10-10	$2-2$	3-3	1 -1	$1+3-1+3$	33
S6563	0^{0}	21-21-21-17	176	96c	8-8	10-10	$2-2$	3-3	$1-1$	$1+3-1+2$	34
S6564	\%	21-21-21-17	177	78 c	8 -8	10-10	2-2	3-3	$1-1$	$1+3-1+3$	35
C6684	\%	$21-21-19-17$	170		8 -8	10-10	1-2	3-3	1 -1	$1+2-1+2$	36
C6685	\%	$\|21-19-17-17\|$	169	$83{ }^{\circ}$	8-8	10-11	1-1	2-2	1-1	$1+2-1+2$	37

Remarks.-Garter-snakes from the San Joaquin Valley and Lower Sierra Nevada have been referred usually to T. vagrans or T. hammondii. This has never been satisfactory, for, although the San Joaquin snakes resemble both these subspecies, they are not like typical specimens of either, but rather may be said to combine characters of both. Certain specimens resemble T. o. hammondii rather closely, but the presence of a dorsal line on at least a portion of the neck will usually serve to distinguish them from that form. Sometimes the line is continued along the back, but it often is very indistinct. The gastrosteges seem to be somewhat more numerous than in T. o. hammondii, and a similar tendency is apparent in the infralabials, which often are eleven instead of ten. On the other hand, two preoculars are found much less frequently than in T. o. hammondii. Intergradation between these two subspecies is shown by certain specimens from the San Joaquin Valley, but seems to be individual rather than geographic. It doubtless will become more evidently geographic when specimens are secured from the proper areas.

The relationship of T. o. couchii to T. o. vagrans is still closer than to T. o. hammondii. This is shown by the character of the spotting adjacent to the dorsal line when present, the frequent occurrence of more or less dark pigment on the gastrosteges, and the fact that in many of the specimens of T. o. couchii some indication of a dorsal line is present.

In typical T. o. vagrans, as it occurs in Idaho, Utah and eastern Nevada, the dorsal line is well marked, the dorsal spots are very evident and invade the edges of the dorsal line, and the gastrosteges almost always are rather heavily pigmented. T. o. couchii differs from this type of coloration in the shortness or indistinctness of its dorsal line, which may be only a half-inch in length, in the less frequent and less extensive pigmentation of the gastrosteges, and in the absence, indefiniteness, or less characteristic arrangement of the dorsal spots. Intergradation between T. o. couchii and T. o. vagrans is to be looked for in western Nevada.

The relationship between T. o. couchii and T. o. elegans also is very close. Typical T. o. elegans seems to occur only at considerable elevations in the Sierra Nevada and in the mountains of southern California. T. o. couchii occupies the lower
levels, but extends its range up in the Sierra Nevada so far, at certain points, that it overlaps that of T. o. elegans, just as the range of T. o. hammondii overlaps that of T. o. elegans in the San Bernardino Mountains of southern California. But, while T. o. hammondii and T. o. elegans seem to remain perfectly distinct and true to character at the places where their ranges meet, specimens showing intermediate characters are found at the points where T. o. couchii and T. o. elegans come in contact, as at Jackass Meadows, 7,750 feet, Tulare County, and in the Yosemite Valley. At other places, as at Fallen Leaf Lake, El Dorado County, and at Glenbrook, Nevada, snakes of both types have been taken but no intermediate specimens have been secured.

One specimen had eaten a young blackbird. Another had caught a six-inch trout.

Where conditions are favorable these snakes often attain enormous size. No. 43256 measures fifty-five and a half inches, of which twelve and a quarter inches represent the tail. No. 43259 has the same measurement to anus, but the tail is one and a quarter inches shorter. These snakes were secured at Buena Vista Lake, where they live in patches of tules out in the lake and doubtless eat fish. Although they may be seen in considerable numbers sunning themselves on the broken-down tules, they are hard to shoot, for they are very shy and slide into the water at the least alarm. Several were seen which appeared to be larger than any secured by us. The largest specimens sometimes show no lateral lines or other markings. Specimens of similar size occur in the marshes near Los Baños.

Thamnophis ordinoides hammondii (Kennicott)

California Garter-Snake.
Diagnosis.-Normally with eight supralabials; twenty-one rows of scales; no red in coloration; no dorsal line; no black on gastrosteges ; often with two preoculars; infralabials rarely more than ten.

Type Locality.-San Diego and Fort Tejon, California.
Synonyms.-The only other name which has been based upon individuals of this race seems to be Tropidonotus digueti

a.-Thammophis ordinoides hummondii, California Garter-Snake:-

Photograph from living specimen collected at Los Angeles, California, May 13, 1915.

1.—Thammophis ordinotdes hammondi; California Garter-Snake:Photograph of living young specimen collected at Los Angeles, May $13,1915$.

[^0]: ${ }^{1}$ The Reptiles of the Pacific Coast and Great Basin, by John Van Denburgh. Occasional Papers Cal. Acad. Sci., Vol. V, pp. 1-236, 1897.

[^1]: Type Locality.-El Dorado County, California.

[^2]: ${ }^{2}$ In June, 1918, some nine years later, they were not especially abundant here.

